Striking cell losses occur during late B lymphocyte maturation, reflecting BcR-mediated selection coupled with requisites for viability promoting signals. How selection and survival cues are integrated remains unclear, but a key role for B lymphocyte stimulator (BLyS(TM); trademark of Human Genome Sciences, Inc.) is suggested by its marked effects on B cell numbers and autoantibody formation as well as the B lineage-specific expression of BLyS receptors. Our analyses of the B cell-deficient A/WySnJ mouse have established Bcmd as a gene controlling follicular B cell life span, and recent reports show Bcmd encodes a novel BLyS receptor. Here we show that A/WySnJ B cells are unresponsive to BLyS, affording interrogation of how Bcmd influences B cell homeostasis. Mixed marrow chimeras indicate A/WySnJ peripheral B cells compete poorly for peripheral survival. Moreover, in vivo BrdU labeling shows that (A/WySnJ x BALB/c)F(1) B cells have an intermediate but uniform life span, indicating viability requires continuous signaling via this pathway. Together, these findings establish the BLyS/Bcmd pathway as a dominant mediator of B cell survival, suggesting competition for BLyS/Bcmd signals regulates follicular B cell numbers.
During aging, adaptive immunity is severely compromised, due in part to decreased production of B lymphocytes and loss of immunoglobulin (Ig) diversity. However, the molecular mechanisms that underlie age-associated diminished B cell production remain unclear. Using in vivo labeling, we find that this reduction in marrow pre–B cells reflects increased attrition during passage from the pro–B to pre–B cell pool. Analyses of reciprocal bone marrow chimeras reveal that the magnitude and production rates of pre–B cells are controlled primarily by microenvironmental factors, rather than intrinsic events. To understand changes in pro–B cells that could diminish production of pre–B cells, we evaluated rag2 expression and V(D)J recombinase activity in pro–B cells at the single cell level. The percentage of pro–B cells that express rag2 is reduced in aged mice and is correlated with both a loss of V(D)J recombinase activity in pro–B cells and reduced numbers of pre–B cells. Reciprocal bone marrow chimeras revealed that the aged microenvironment also determines rag2 expression and recombinase activity in pro–B cells. Together, these observations suggest that extrinsic factors in the bone marrow that decline with age are largely responsible for less efficient V(D)J recombination in pro–B cells and diminished progression to the pre–B cell stage.
B lymphopoiesis has historically been depicted as a unidirectional process, in which cohorts of developing cells transit through successive differentiative stages in an irreversible, synchronous manner. Here, we examine this view by combining kinetic analysis of developing B cell subsets in the bone marrow with mathematical modeling. Our bromo-deoxyuridine (BrdU) labeling data are incompatible with B cell development being a synchronous process, because labeling curves are non-linear. Moreover, we show that B cell development may not be completely unidirectional, because our results support the possibility of a phenotypic "reflux" among the immature to the pre-B cell subsets.
More than 95% of newly formed B cells die in the short interval spanning sIgM acquisition in the bone marrow and entry into the long-lived pool, suggesting that selective events dictating B cell longevity occur at this stage. These likely include both ligand-induced deletion as well as discrete events that mediate recruitment to the long-lived recirculating pool. We are probing these events through the examination of normal B cell differentiation during this critical period: the characterization of a natural mutation that blocks late maturation, an irradiation/autoreconstitution model of marrow-derived B cell differentiation, and the identification of life span regulatory genes whose expression changes within this window.
Human X-linked agammaglobulinemia (XLA) and murine X-linked immune defect (XID) are both immunodeficiencies mediated by mutations in Bruton's tyrosine kinase (Btk), yet the developmental stage(s) affected remain controversial. To further refine the placement of the XID defect(s), we used bromodeoxyuridine labeling to determine turnover, production and transition rates of developing B cell subsets in normal, xid and xid mice expressing a human Bcl-2 transgene (xid/bcl-2). We find the xid mutation manifest at two stages of B cell development. The first is early, reducing pre-B cell production by restricting pro-B to pre-B cell transit. Surprisingly, this impairment is offset by increased survival of cells progressing from the pre- to immature B cell pool, suggesting that Btk-independent homeostatic mechanisms act to maintain this compartment. The second point of action is late, substantially reducing mature B cell production. Together, these findings reconcile apparent discrepancies in the developmental stage affected by the murine versus human lesions and suggest previously unappreciated homeostatic processes that act at the pre-B to immature B cell transition. Finally, Btk likely functions differently at these two checkpoints, since ectopic Bcl-2 expression fails to directly complement the early xid lesion, yet reverses the defect impeding final B cell maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.