As part of ongoing activities toward the design of potent and selective ligands against galactoside-binding proteins from animal, bacterial, and plant lectins, a systematic investigation involving the synthesis and binding evaluations of a series of original β-C-galactopyranoside mimetics is described. The multivalent presentation of partly optimized candidates on various dendritic scaffolds through Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAc) has also been achieved. Biophysical investigations based on isothermal titration calorimetry (ITC) have indicated a dissociation constant in the low micromolar range for the best optimized monovalent conjugate (K(d)=37 μM). The results thus confirmed that stable C-galactosides could represent efficient synthetic glycomimetics of natural α-linked oligosaccharidic inhibitors of PA-IL lectin (Lec A) from the pathogenic Pseudomonas aeruginosa. Striking enhancements in the avidity of the glycoconjugates were also observed for tri-, hexa-, and nonavalent derivatives, among which the most potent exhibited dissociation constants below 500 nM, corresponding to a 400-fold increase in affinity compared with the β-D-Gal-O-Me used as reference. To deepen our understanding of the binding mode of the best glycomimetics involved in the recognition process, molecular modeling studies, docking calculations, and NMR diffusion measurements have been performed. Although favorable complementary interactions induced by the addition of the hydrophobic aglycon might explain the affinity enhancement, experimental determination of the size and the topology of the multivalent conjugates further supported the formation of aggregative complexes as a major multivalent binding mode. This work represents a systematic and comprehensive study towards a thorough understanding of the protein-carbohydrate interactions involved in Pseudomonas aeruginosa infection, and as such should prove useful for the development of stable and optimized anti-adhesive agents.
Antagonists of the Escherichia coli type-1 fimbrial adhesin FimH are recognized as attractive alternatives for antibiotic therapies and prophylaxes against acute and recurrent bacterial infections. In this study α-d-mannopyranosides O- or C-linked with an alkyl, alkene, alkyne, thioalkyl, amide, or sulfonamide were investigated to fit a hydrophobic substituent with up to two aryl groups within the tyrosine gate emerging from the mannose-binding pocket of FimH. The results were summarized into a set of structure-activity relationships to be used in FimH-targeted inhibitor design: alkene linkers gave an improved affinity and inhibitory potential, because of their relative flexibility combined with a favourable interaction with isoleucine-52 located in the middle of the tyrosine gate. Of particular interest is a C-linked mannoside, alkene-linked to an ortho-substituted biphenyl that has an affinity similar to its O-mannosidic analog but superior to its para-substituted analog. Docking of its high-resolution NMR solution structure to the FimH adhesin indicated that its ultimate, ortho-placed phenyl ring is able to interact with isoleucine-13, located in the clamp loop that undergoes conformational changes under shear force exerted on the bacteria. Molecular dynamics simulations confirmed that a subpopulation of the C-mannoside conformers is able to interact in this secondary binding site of FimH.
Uropathogenic Escherichia coli infections, ultimately leading to cystitis and pyelonephritis, are initially mediated by the adhesion of the bacterial FimH to the transmembrane glycoprotein uroplakin-1a present at the surface of urothelial cells. The adhesion is based on the recognition and high avidity binding between the high-mannose glycans of the uroplakin and the FimH, a mannose-specific lectin located at the tip of type 1 fimbriae. We found that synthetic multiantennary mannopyranosides glycodendrons, harboring triazole functionality at the anomeric position, were potent hemagglutination inhibitors of guinea pig erythrocytes and E. coli. A mannosylated dendrimer exposing up to sixteen sugar residues showed an HAI titer of 1 μM and was thus 500-fold more potent than the corresponding monovalent methyl α-d-mannopyranoside. The synthesis of the glycodendrons involved highly efficient solid-phase synthesis of branched l-lysine scaffolds, diazo transfer reaction on the terminal amine residues, and 1,3-dipolar copper-catalyzed azide-alkyne cycloaddition using propargyl α-d-mannopyranoside.
Several oligomannoside clusters having a hundred-fold increase in affinities toward E. coli were synthesized by Cu(I)-catalyzed [1,3]-dipolar cycloadditions using pentaerythritol scaffolds bearing either alkyne or azide functionalities.
El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.