Background: Additive manufacturing has allowed for the creation of a patient-specific custom solution that can resolve many of the limitations previously reported for canine cranioplasty. The purpose of this pilot study was to determine the schedule feasibility and workflow in manufacturing patient-specific titanium implants for canines undergoing cranioplasty immediately following craniectomy. Results: Computed tomography scans from patients with tumors of the skull were considered and 3 cases were selected. Images were imported into a DICOM image processing software and tumor margins were determined based on agreement between a board-certified veterinary radiologist and veterinary surgical oncologist. Virtual surgical planning was performed and a bone safety margin was selected. A defect was created to simulate the planned intraoperative defect. Stereolithography format files of the skulls were then imported into a plate design software. In collaboration with a medical solution centre, a custom titanium plate was designed with the input of an applications engineer and veterinary surgery oncologist. Plates were printed in titanium and post-processed at the solution centre. Total planning time was approximately 2 h with a manufacturing time of 2 weeks. Conclusions: Based on the findings of this study, with access to an advanced 3D metal printing medical solution centre that can provide advanced software and printing, patient-specific additive manufactured titanium implants can be planned, created, processed, shipped and sterilized for patient use within a 3-week turnaround.
BackgroundLow-level laser therapy (LLLT) has been used clinically as a treatment modality for a variety of medical conditions including wound-healing processes. It is an attractive and emerging method to enhance wound healing and improve clinical outcomes both in human and veterinary medicine. Despite the fact that the use of LLLT continues to gain in popularity, there is no universally accepted theory that defends all its cellular effects and beneficial biological processes in tissue repair. The present study was designed to evaluate the effect of LLLT on cellular migration and proliferation of cultured canine epidermal keratinocytes (CPEK) in an in vitro wound healing model.ResultsKeratinocyte migration and proliferation were assessed using a scratch migration assay and a proliferation assay, respectively. Fifteen independent replicates were performed for each assay. Canine epidermal keratinocyte cells exposed to LLLT with 0.1, 0.2, and 1.2 J/cm2 migrated significantly more rapidly (p < 0.03) and showed significantly higher rates of proliferation (p < 0.0001) compared to non-irradiated cells cultured in the same medium and cells exposed to the higher energy dose of 10 J/cm2. Irradiation with 10 J/cm2 was characterized by decreased cellular migration and proliferation. These results revealed that LLLT has a measurable, dose-dependent effect on two different aspects of keratinocyte biology in vitro.ConclusionIn this in vitro wound-healing model, LLLT increased cellular migration and proliferation at doses of 0.1, 0.2, and 1.2 J/cm2 while exposure to 10 J/cm2 decreased cellular migration and proliferation. These data suggest that the beneficial effects of LLLT in vivo may be due, in part, to effects on keratinocyte behavior.
OBJECTIVE To assess the effects of 3 intra-abdominal pressures (IAPs) on pneumoperitoneal (laparoscopic working space) volume in domestic rabbits (Oryctolagus cuniculus). ANIMALS 6 female New Zealand White rabbits. PROCEDURES A Latin-square design was used to randomly allocate sequences of 3 IAPs (4, 8, and 12 mm Hg) to each rabbit in a crossover study. Rabbits were anesthetized, subumbilical cannulae were placed, and CT scans were performed to obtain baseline measurements. Each IAP was achieved with CO2 insufflation and maintained for ≥ 15 minutes; CT scans were performed with rabbits in dorsal, left lateral oblique, and right lateral oblique recumbency. The abdomen was desufflated for 5 minutes between treatments (the 3 IAPs). Pneumoperitoneal volumes were calculated from CT measurements with 3-D medical imaging software. Mixed linear regression models evaluated effects of IAP, rabbit position, and treatment order on working space volume. RESULTS Mean working space volume at an IAP of 8 mm Hg was significantly greater (a 19% increase) than that at 4 mm Hg, and was significantly greater (a 6.9% increase) at 12 mm Hg than that at 8 mm Hg. Treatment order, but not rabbit position, also had a significant effect on working space. Minor adverse effects reported in other species were observed in some rabbits. CONCLUSIONS AND CLINICAL RELEVANCE A nonlinear increase in abdominal working space was observed with increasing IAP. Depending on the type of procedure and visual access requirements, IAPs > 8 mm Hg may not provide a clinically important benefit for laparoscopy in rabbits.
OBJECTIVE To determine effects of repeated use and resterilization on structural and functional integrity of microwave ablation (MWA) antennas. SAMPLE 17 cooled-shaft MWA antennas (3 groups of 5 antennas/group and 2 control antennas). PROCEDURES 1, 2, and 3 ablations in the livers of bovine cadavers were performed at the maximum recommended settings. Antennas were cleaned and sterilized in hydrogen peroxide plasma, and the process was repeated (reprocessing cycle; n = 6). Control antennas were only sterilized (6 times). Aerobic and anaerobic bacterial cultures were performed, and antennas were microscopically assessed for damage. RESULTS 6 cycles were completed. Thirteen of 15 MWA antennas remained functional for up to 4 cycles, 10 were functional after 5 cycles, and only 7 were functional after 6 cycles. Progressive tearing of the silicone coating of the antennas was observed, with a negative effect of the number of cycles for silicone tearing. Size of the ablation zone decreased mildly over time after cycles 5 and 6; however, this was not considered clinically relevant. No significant changes in the shape of ablation zones were detected. All cultures yielded negative results, except for an isolated case, which was considered a contaminant. CONCLUSIONS AND CLINICAL RELEVANCE Structural and functional integrity of the microwave antennas remained acceptable during repeated use and reprocessing for up to 4 cycles. However, there was a decrease in functional integrity at cycles 5 and 6. We suggest that these microwave antennas be subjected to > 3 reprocessing cycles. Antennas should be carefully examined before reuse.
OBJECTIVE To evaluate pneumoperitoneal volumes (laparoscopic working space) in guinea pigs (Cavia porcellus) undergoing pneumoperitoneum via carbon dioxide insufflation at different intra-abdominal pressures (IAPs) (4, 6, and 8 mm Hg) and recumbencies (dorsal, right lateral, and left lateral). ANIMALS Six 3- to 4-month-old sexually intact female Hartley guinea pigs. PROCEDURES Guinea pigs were anesthetized, intubated, and had an abdominal insufflation catheter placed. A baseline abdominal CT scan was performed. Guinea pigs underwent insufflation, with each IAP given in a random order for 10 to 15 minutes with a washout period of 5 minutes between pressures. Abdominal CT scans were acquired at each IAP and at each recumbency. Pneumoperitoneal volumes were calculated using software. RESULTS Increases in IAP increased working space significantly (P < .001). The 6- and 8-mm Hg pressures increased working space from 4 mm Hg by 7.3% and 19.8%, respectively. Recumbent positioning (P = .60) and body weight (P = .73) did not affect working space. Order of IAP had a significant (P = .006) effect on working space. One of the guinea pigs experienced oxygen desaturation and bradycardia at 6- and 8-mm Hg IAP. CLINICAL RELEVANCE Although an increased working space occurred at 6 and 8 mm Hg compared to 4 mm Hg, further research is needed concerning the cardiovascular effects of pneumoperitoneum in guinea pigs to determine whether those higher IAPs are safe in this species. An IAP of 6 mm Hg can be considered for laparoscopic cannula placement, followed by a lower IAP for laparoscopic procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.