Estimating evapotranspiration is crucial for better management of catchment water resources. In this study, the FAO CropWat model was used to estimate reference evapotranspiration (ETo), crop evapotranspiration (ETc), and total gross water requirements for three economically important agricultural crops grown in Malta: potatoes, wheat, and vineyards for three years representative of a typically wet (2003), average (2009), and dry (2013) year. In addition, changes in ETc due to changes in land use were estimated for 2009 and 2013 relative to a 2003 baseline. Across all three years and crops, the average ETo rates were estimated to range between 3.7 mm day -1 (2003) and 4.0 mm day-1 (2013) while average ETc rates were estimated to range between 1.6 mm day-1 and 5.3 mm day-1, respectively. For all three years, the highest total gross water requirement was estimated for wheat, reaching a maximum of 1450 mm in 2013. The results suggest that changes in land use between 2003 and 2013 were the main driver for changes in crop water demand. Differences in water demand compared to 2003 were estimated to range between -38% and 60%. This could have a substantial impact on the future sustainability of Malta’s increasingly constrained water resources.
The study of patterns of small firm strategic behavior, or strategic orientation, is gradually gaining prominence in the literature. Strategic behavior is a consequence of various antecedents, such as the prevalent management philosophy and environmental dynamism. It, in turn, determines the particular engineering stance adopted, structures and processes deployed, and ultimately, organizational performance. The purpose of this paper is to critique, enhance and extend a model proposed by Aloulou and Fayolle (2005) that is focused particularly on the entrepreneurial orientation of small firms. A model is proposed for small firm strategic orientation that is based on a configurational approach, and applies the concepts of the adaptive cycle and the firm's lifecycle. The rationale for, and the various dimensions of the proposed model are described, and recommendations made for future research on small firm strategic behavior.
The application of titanium oxide nanotubes for the removal of contaminants from freshwater is a rapidly growing scientific interest, especially when it comes to water conservation strategies. In this study we employed four different titanium oxide nanotube surfaces, prepared by a two-electrode anodic oxidation. Two of the surfaces were synthesised in aqueous media, while the other two surfaces were synthesised in ethylene glycol. One of the arrays synthesised in the organic medium was impregnated with silver nanoparticles, while the remaining surfaces were not. The chemical reactivity of the various surfaces was assessed using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as free electron sensitive probe molecules, in parallel with tannic acid degradation and copper ion reducing capacity. The potential antimicrobial activity of the surfaces was assessed against a panel of microorganisms composed of yeast, fungi, Gram-positive and Gram-negative bacteria. Field emission scanning electron microscopy revealed that surfaces produced in the aqueous medium had a smaller tube length and a smaller tube diameter. It was noted that one of the materials using sodium sulfate as the supporting electrolyte had the most irregular nanostructure morphology with tubes growing to the side rather than vertically. The structural variation of the surfaces directly reflected both the chemical and biological activity, with the nanotubes formed in ethylene glycol showing the fastest rates in the stabilization of DPPH and ABTS radicals, the fastest tannic acid decomposition under various pH conditions and the fastest metal reducing activity. Furthermore, the surface containing silver and its bare counterpart showed the most effective antimicrobial activity, removing approximately 82% of Gram-negative bacteria, 50% of Gram-positive bacteria, 70% of yeast and 40% of fungi, with Gram-negative bacteria being the most susceptible to these surfaces.
Photocatalysis has long been touted as one of the most promising technologies for environmental remediation. The ability of photocatalysts to degrade a host of different pollutants, especially recalcitrant molecules, is certainly appealing. Titanium dioxide (TiO2) has been used extensively for this purpose. Anodic oxidation allows for the synthesis of a highly ordered nanotubular structure with a high degree of tunability. In this study, a series of TiO2 arrays were synthesised using different electrolytes and different potentials. Mixed anatase-rutile photocatalysts with excellent wettability were achieved with all the experimental iterations. Under UVA light, all the materials showed significant photoactivity towards different organic pollutants. The nanotubes synthesised in the ethylene glycol-based electrolyte exhibited the best performance, with near complete degradation of all the pollutants. The antibacterial activity of this same material was similarly high, with extremely low bacterial survival rates. Increasing the voltage resulted in wider and longer nanotubes, characteristics which increase the level of photocatalytic activity. The ease of synthesis coupled with the excellent activity makes this a viable material that can be used in flat-plate reactors and that is suitable for photocatalytic water treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.