For many species, there is evidence that breeding performance changes as an individual ages. In iteroparous species, breeding performance often increases through early life and is expected to level out or even decline (senesce) later in life. An individual's sex and conditions experienced in early life may also affect breeding performance and how this changes with age. Long-term monitoring of individuals from reintroduced populations can provide unique opportunities to explore age-related trends in breeding performance that might otherwise be logistically challenging. We used a unique dataset from a reintroduced population of white-tailed eagles Haliaeetus albicilla in Scotland, which has been intensively monitored since their initial reintroduction in 1975, to study age- and sex-specific trends in two measures of breeding performance. This monitoring provided data on the breeding performance of known individuals ranging in age from 3 to 26 years. We also explored changes in breeding performance in relation to early life experience (i.e., whether they were released or fledged in the wild). Breeding performance increased with age in early life in a similar manner for both sexes. We found stronger evidence for senescence in breeding performance in males than females. However, late-life female breeding success was associated with early life experience, while male senescent trends were not apparently impacted by conditions experienced during early life. Sexual differences in senescence mean that older males are less likely to breed successfully compared to older females, and this may influence females' mate changes later in life. This difference may suggest a linked sexual difference in survival rates or the possibility of proactive partner change by females in later life in this typically monogamous biparental species.
Previous studies have shown negative associations between wind energy development and breeding birds, including species of conservation concern. However, the magnitude and causes of such associations remain uncertain, pending detailed ‘before‐after‐control‐intervention’ (BACI) studies. We conducted one of the most detailed such studies to date, assessing the impacts of terrestrial wind energy development on the European Golden Plover Pluvialis apricaria, a species with enhanced protection under European environmental law. Disturbance activity during construction had no significant effect on Golden Plover breeding abundance or distribution. In contrast, once turbines were erected, Golden Plover abundance was significantly reduced within the wind farm (−79%) relative to the baseline, with no comparable changes in buffer or control areas. Golden Plovers were significantly displaced by up to 400 m from turbines during operation. Hatching and fledging success were not affected by proximity to turbine locations either during construction or operation. The marked decline in abundance within the wind farm during operation but not construction, together with the lack of evidence for changes in breeding success or habitat, strongly suggests the displacement of breeding adults through behavioural avoidance of turbines, rather than a response to disturbance alone. It is of critical importance that wind farms are appropriately sited to prevent negative wildlife impacts. We demonstrate the importance of detailed BACI designs for quantifying the impacts on birds, and recommend wider application of such studies to improve the evidence base surrounding wind farm impacts on birds.
Understanding how seabirds use the marine environment is key for marine spatial planning, and maps of their marine distributions derived from transect-based surveys and from tracking of individual bird’s movements are increasingly available for the same geographic areas. Although the value of integrating these different datasets is well recognised, few studies have undertaken quantitative comparisons of the resulting distributions. Here we take advantage of four existing distribution maps and conduct a quantitative comparison for four seabird species (black-legged kittiwake Rissa tridactyla; European shag Phalacrocorax aristotelis; common guillemot Uria aalge; and razorbill Alca torda). We quantify the amount of overlap and agreement in the location of high use areas identified from either tracking or transect samples and use Bhattacharyya’s Affinity to quantify levels of similarity in the general distribution patterns. Despite multiple differences in the properties of the datasets, there was a far greater degree of overlap than would be expected by chance, except when adopting the most constrained definition of high use. Distance to the nearest conspecific colony appeared to be an important driver of the degree of similarity. Agreed areas of highest use tended to occur close to colonies and, with increasing distance from colonies, similarity between datasets declined and/or there was similarity in respect of their being relatively low usage. Interpreting reasons for agreement between data sources in some areas and not others was limited by an inability to control for the multiple potential sources of differences from both the sampling and modelling processes of the underlying datasets. Nevertheless, our quantitative comparative approach provides a valuable tool to quantify the degree to which an area’s importance is corroborated across multiple datasets, and therefore confidence that an important area has been correctly identified. This can help prioritise where the implementation of conservation measures should be targeted and identify where greatest scrutiny is required of the potential adverse environmental effects of any planned anthropogenic activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.