Graphique 3.1. Le cycle australien d'élaboration de l'action publique Graphique 3.2. Le « décalage dû à la traduction » dans la production et l'exploitation des politiques publiques Graphique 3.3. Perceptions de l'équité des institutions, gouvernement compris Graphique 4.1. Capture d'écran des lois codées d'ElectKB Graphique 4.2. Capture d'écran de l'interface utilisateur d'ElectKB Graphique 5.1. Processus de transformation numérique de l'administration Graphique 5.2. Le concept de moteur de règles Graphique 5.3. Le codage des règles depuis leur création Graphique 6.1. Avantages et inconvénients de la programmation impérative Graphique 8.1. Est-il judicieux de coder les règles ? Encadrés Encadré 1.1. Où sont les règles ? Encadré 2.1. Le codage des règles et les niveaux de numérisation Encadré 2.2. Règles lisibles par les machines ou règles exécutables par les machines Encadré 2.3. Quelles règles ? Encadré 2.4. Le projet Better Rules du gouvernement néo-zélandais Encadré 3.1. Systèmes juridiques de common law, de droit civil, et mixtes Encadré 3.2. De la législation au code Encadré 3.3. De l'intention à la mise en oeuvre : les effets réels Encadré 4.1. OpenFisca Encadré 4.2. Mes Aides et Mon Entreprise, gouvernement français Encadré 4.3. ElectKB, Institut australasien d'information juridique Encadré 4.4. Automatisation des règles commerciales internationales Encadré 4.5. Prise de décision déléguée en matière juridique, IP Australia Encadré 4.6. LexImpact Encadré 5.1. Danemark : Les principes d'une législation adaptée au numérique Encadré 5.2. Projet exploratoire de codage des règles du gouvernement canadien Encadré 5.3. Projet « Digital Regulatory Reporting » Encadré 6.1. Langage Catala, Institut national de recherche en sciences et technologies du numérique, France Encadré 6.2. Gouvernement de Nouvelle-Galles du Sud, Australie Encadré 7.1. Vue d'ensemble de la situation actuelle Encadré 7.2. Le scénario 0 Encadré 7.3. Scénario 1 Encadré 7.4. Scénario 2
The very valuable series of meridian measures of a, a, Centauri made at the Cape Observatory during the years 1879-1881 1) afford an opportunity of obtaining a determination of the relative masses of the two stars independent of latitude.The advantage of basing the determination not only o n observations made at the same observatory, but also on observations continuous enough to give mean places nearly freed from the troublesome errors that influence individual measures, is a very obvious one.There are nine such series of measures that can be so utilized.I ) The well known meridian measures made by Henderson in 1832, 1 8 3 3 .~) Henderson observed both stars in RA. and Decl., reflex and direct.2) The meridian nieasures made by Maclear in 1839, 1840.3) They were reduced by Henderson who obtained from them a parallax of 01'91 thus confirming his first determination.If however more correct values of the proper motion in Declination be substituted in the final equations, the parallax and aberration constaut become,The values of the proper motion adopted by Henderson is a, = +1!'23 = +0.64 k = 2 0 . 5 0 More recent investigation gives as the values a, = +1709 a, = +O.4C 3) The meridian measures made by Maclear in 1842, 1843.4) They were reduced by Maclear himself who obtained a parallax of nearly one second of arc. This result is, as in the preceding case, slightly influenced by the erroneous proper motion of % Centauri adopted by Maclear. Besides the 1842, 1843 measures, there are some measures taken in 1849 which are discussed at the same time. T o obtain a mean place Maclear reduced the 1842, 1843 measures to xBt Jan. 1849 using Henderson's values of the proper motion. Hy comparing this mean place with Henderson's mean place for 1840 he obtained a new, and, especially for a, Centauri, erroneous value of the proper motion. Correcting for this error Maclear's parallax of a Centauri becomes n = of90 4) The meridian measures made by Maclear in 1856 5) The meridian measures made by Maclear in 1857 of a2 alone.5) of a, alone.5) They were reduced by Stone. They were reduced by Stone.8 6) The meridian measures made by Maclear in 1 8 5 8 of a2 alone.5) 7) The meridian measures made by Maclear in 1859 of al0ne.5) 8) The meridian measures made by Maclear in 1860 of a, alone.5) 9) The meridian measures made by Gill in 1879, 1881 of a, and a, Centauri, in RA. and Decl.1) These measures have already been reduced. They give a parallax of if we regard declination measures alone; or if we combine both Right Ascension and Declination measures a parallax equal to o!'7r +0106 a value in close agreement with that found from Heliometer measures. Each of the above series of observations in Declination was reduced to the centre of gravity of the system for 1880 adopting the following orbit P = 81.185 years e = 0.52865 R = 5 2 " 0'58" z = 79 P I 36 a = 1 7 7 7 1 or81 *oolo5 T = 1875.715 a = 2 5 5 5 0 (1900) (Astr. Nachr. No. 3 I 7 5) m2 = m, and assuming Ad = + O f 7 5 and taking as the mean latitude of the transit circle -33O 56' 3755 bei...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.