We propose a high-performance texture streaming system for real-time rendering of large 3D cities with millions of textures. Our main contribution is a texture streaming system that automatically adjusts the streaming workload at runtime based on measured frame latencies, specifically addressing the high memory binding costs of hardware virtual texturing which causes frame rate stuttering. Our system streams textures in parallel with prioritization based on GPU computed mesh perceptibility, and these textures are cached in a sparse partially resident image at runtime without the need for a texture preprocessing step. In addition, we improve rendering quality by minimizing texture pop-in artifacts using a color blending scheme based on mipmap levels. We evaluate our texture streaming system using three structurally distinct datasets with many textures and compared it to a baseline, a game engine, and our prior method. Results show an 8X improvement in rendering performance and 7X improvement in rendering quality compared to the baseline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.