Vertebrates employ an impressive range of strategies for coordinating their limb movements while walking. Although this gait variation has been quantified and hypotheses for its origins tested in select tetrapod lineages, a comprehensive understanding of gait evolution in a macroevolutionary context is currently lacking. We used freely available internet videos to nearly double the number of species with quantitative gait data, and used phylogenetic comparative methods to test key hypotheses about symmetrical gait origin and evolution. We find strong support for an ancestral lateral-sequence diagonal-couplet gait in quadrupedal gnathostomes, and this mode is remarkably conserved throughout tetrapod phylogeny. Evolutionary rate analyses show that mammals overcame this ancestral constraint, resulting in a greater range of phase values than any other tetrapod lineage. Diagonal-sequence diagonal-couplet gaits are significantly associated with arboreality in mammals, though this relationship is not recovered for other tetrapod lineages. Notably, the lateral-sequence lateral-couplet gait, unique to mammals among extant tetrapods, is not associated with any traditional explanations. The complex drivers of gait diversification in mammals remain unclear, but our analyses suggest that their success was due, in part, to release from a locomotor constraint that has probably persisted in other extant tetrapod lineages for over 375 Myr.
Three dimensional morphometric methods are a powerful tool for comparative analysis of shape. However, morphological shape is often represented using landmarks selected by the user to describe features of perceived importance, and this may lead to over confident prediction of form-function relationships in subsequent analyses. We used Generalized Procrustes Analysis (GPA) of 13 homologous 3D landmarks and spherical harmonics (SPHARM) analysis, a homology-free method that describes the entire shape of a closed surface, to quantify the shape of the calcaneus, a landmark poor structure that is important in hind-limb mechanics, for 111 carnivoran species spanning 12 of 13 terrestrial families. Both approaches document qualitatively similar patterns of shape variation, including a dominant continuum from short/stout to long/narrow calcanea. However, while phylogenetic generalized linear models indicate that locomotor mode best explains shape from the GPA, the same analyses find that shape described by SPHARM is best predicted by foot posture and body mass without a role for locomotor mode, though effect sizes for all are small. User choices regarding morphometric methods can dramatically impact macroevolutionary interpretations of shape change in a single structure, an outcome that is likely exacerbated when readily landmarkable features are few.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.