Intestinal fungi are an important component of the microbiota, and recent studies have unveiled their potential in modulating host immune homeostasis and inflammatory disease. Nonetheless, the mechanisms governing immunity to gut mycobiota remain unknown. We identified CX3CR1+ mononuclear phagocytes (MNPs) as essential for the initiation of innate and adaptive immune responses to intestinal fungi. CX3CR1+ MNPs express antifungal receptors and activate antifungal responses in a Syk dependent manner. Genetic ablation of CX3CR1+ MNPs led to changes in the gut fungal communities and to severe colitis that was rescued by antifungal treatment. A missense mutation in the gene encoding CX3CR1 led to impaired antifungal responses in Crohn’s Disease patients. These results unravel the role of CX3CR1+ MNPs as mediators of the interactions between intestinal mycobiota and host immunity during health and disease.
Summary
Sensing of the gut microbiota, including fungi, regulates mucosal immunity. Whether fungal sensing in the gut can influence immunity at other body sites is unknown. Here we show that fluconazole-induced gut fungal dysbiosis has persistent effects on allergic airway disease in a house dust mite challenge model. Mice with a defined community of bacteria, but lacking intestinal fungi were not susceptible to fluconazole-induced dysbiosis, while colonization with a fungal mixture recapitulated the detrimental effects. Gut resident mononuclear phagocytes (MNPs) expressing the fractalkine receptor CX3CR1 were essential for the effect of gut fungal dysbiosis on peripheral immunity. Depletion of CX3CR1+ MNPs or selective inhibition of Syk signaling downstream of fungal sensing in these cells ameliorated lung allergy. These results indicate that disruption of intestinal fungal communities can have persistent effects on peripheral immunity and aggravate disease severity through fungal sensing by gut resident CX3CR1+ MNPs.
Highlights d High gut Candida before FMT is associated with clinical response in ulcerative colitis d Decreases in Candida post-FMT are indicative of ameliorated disease severity d Increased anti-Candida antibodies in placebo controls were abrogated in FMT recipients d Pre-FMT Candida associates with bacterial diversity and genera linked to responsiveness
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.