Based on the theory of stochastic chemical kinetics, the inherent randomness of biochemical reaction networks can be described by discrete-state continuous-time Markov chains. However, the analysis of such processes is computationally expensive and sophisticated numerical methods are required. Here, we propose an analysis framework in which we integrate a number of moments of the process instead of the state probabilities. This results in a very efficient simulation of the time evolution of the process. To regain the state probabilities from the moment representation, we combine the fast moment-based simulation with a maximum entropy approach for the reconstruction of the underlying probability distribution. We investigate the usefulness of this combined approach in the setting of stochastic chemical kinetics and present numerical results for three reaction networks showing its efficiency and accuracy. Besides a simple dimerization system, we study a bistable switch system and a multiattractor network with complex dynamics. ACM Reference Format:Alexander Andreychenko, Linar Mikeev, and Verena Wolf. 2015. Model reconstruction for moment-based stochastic chemical kinetics. ACM Trans. Model.
The stochastic nature of chemical reactions involving randomly fluctuating population sizes has lead to a growing research interest in discrete-state stochastic models and their analysis. A widely-used approach is the description of the temporal evolution of the system in terms of a chemical master equation (CME). In this paper we study two approaches for approximating the underlying probability distributions of the CME. The first approach is based on an integration of the statistical moments and the reconstruction of the distribution based on the maximum entropy principle. The second approach relies on an analytical approximation of the probability distribution of the CME using the system size expansion, considering higher-order terms than the linear noise approximation. We consider gene expression networks with unimodal and multimodal protein distributions to compare the accuracy of the two approaches. We find that both methods provide accurate approximations to the distributions of the CME while having different benefits and limitations in applications.
The stochastic dynamics of biochemical reaction networks can be accurately described by discrete-state Markov processes where each chemical reaction corresponds to a state transition of the process. Due to the largeness problem of the state space, analysis techniques based on an exploration of the state space are often not feasible and the integration of the moments of the underlying probability distribution has become a very popular alternative. In this paper the focus is on a comparison of reconstructed distributions from their moments obtained by two different moment-based analysis methods, the method of moments (MM) and the method of conditional moments (MCM). We use the maximum entropy principle to derive a distribution that fits best to a given sequence of (conditional) moments. For the two gene regulatory networks that we consider we find that the MCM approach is more suitable to describe multimodal distributions and that the reconstruction of marginal distributions is more accurate if conditional distributions are considered.
In this paper, the problem of random vibration of geometrically nonlinear MDOF structures is considered. The solutions obtained by application of two different versions of a stochastic linearization method are compared with exact (F-P-K) solutions. The formulation of a relatively new version of the stochastic linearization method (energy-based version) is generalized to the MDOF system case. Also, a new method for determination of nonlinear stiffness coefficients for MDOF structures is demonstrated. This method in combination with the equivalent linearization technique is implemented in a new computer program. Results in terms of root-mean-square (RMS) displacements obtained by using the new program and an existing in-house code are compared for two examples of beam-like structures. ~~ Introduction Resurgent interest in high speed fight vehicles and the daily operation of the aging commercial and military aircraft fleets necessitate the further development of sonic fatigue technology to understand the fatigue mechanisms and to estimate the service life of aerospace structures subjected to intense acoustic and thermal loads. Efforts to extend the performance and flight envelope of high speed aerospace vehicles have resulted in structures which may behave in a geometrically nonlinear fashion to the imposed loads. Such behavior can have a significant effect on fatigue life. Further improvements in vehicle performance and system design are hampered by the limited understanding of the physical nature of geometrically nonlinear *NRC Postdoctoral
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.