Self-localization of an underwater vehicle is particularly challenging due to the absence of Global Positioning System (GPS) reception or features at known positions that could otherwise have been used for position computation. Thus Autonomous Underwater Vehicle (AUV) applications typically require the pre-deployment of a set of beacons.This thesis examines the scenario in which the members of a group of AUVs exchange navigation information with one another so as to improve their individual position estimates.We describe how the underwater environment poses unique challenges to vehicle navigation not encountered in other environments in which robots operate and how cooperation can improve the performance of self-localization. As intra-vehicle communication is crucial to cooperation, we also address the constraints of the communication channel and the effect that these constraints have on the design of cooperation strategies.The classical approaches to underwater self-localization of a single vehicle, as well as more recently developed techniques are presented. We then examine how methods used for cooperating land-vehicles can be transferred to the underwater domain. An algorithm for distributed self-localization, which is designed to take the specific characteristics of the environment into account, is proposed.We also address how correlated position estimates of cooperating vehicles can lead to overconfidence in individual position estimates.Finally, key to any successful cooperative navigation strategy is the incorporation of the relative positioning between vehicles. The performance of localization algorithms with different geometries is analyzed and a distributed algorithm for the dynamic positioning of vehicles, which serve as dedicated navigation beacons for a fleet of AUVs, is proposed.
In cooperative navigation, teams of mobile robots obtain range and/or angle measurements to each other and dead-reckoning information to help each other navigate more accurately. One typical approach is moving baseline navigation, in which multiple Autonomous Underwater Vehicles (AUVs) exchange range measurements using acoustic modems to perform mobile trilateration. While the sharing of information between vehicles can be highly beneficial, exchanging measurements and state estimates can also be dangerous because of the risk of measurements being used by a vehicle more than once; such data re-use leads to inconsistent (overconfident) estimates, making data association and outlier rejection more difficult and divergence more likely. In this paper, we present a technique for the consistent cooperative localization of multiple AUVs performing mobile trilateration. Each AUV establishes a bank of filters, performing careful bookkeeping to track the origins of measurements and prevent the use any of the measurements more than once. The multiple estimates are combined in a consistent manner, yielding conservative covariance estimates. The technique is illustrated using simulation results. The new method is compared side-by-side with a naive approach that does not keep track of the origins of measurements, illustrating that the new method keeps conservative covariance bounds whereas state estimates obtained with the naive approach become overconfident and diverge.
SUMMARYPorpoise echolocation has been studied previously, mainly in target detection experiments using stationed animals and steel sphere targets, but little is known about the acoustic behaviour of free-swimming porpoises echolocating for prey. Here, we used small onboard sound and orientation recording tags to study the echolocation behaviour of free-swimming trained porpoises as they caught dead, freely drifting fish. We analysed porpoise echolocation behaviour leading up to and following prey capture events, including variability in echolocation in response to vision restriction, prey species, and individual porpoise tested. The porpoises produced echolocation clicks as they searched for the fish, followed by fast-repetition-rate clicks (echolocation buzzes) when acquiring prey. During buzzes, which usually began when porpoises were about 1-2 body lengths from prey, tag-recorded click levels decreased by about 10 dB, click rates increased to over 300 clicks per second, and variability in body orientation (roll) increased. Buzzes generally continued beyond the first contact with the fish, and often extended until or after the end of prey handling. This unexplained continuation of buzzes after prey capture raises questions about the function of buzzes, suggesting that in addition to providing detailed information on target location during the capture, they may serve additional purposes such as the relocation of potentially escaping prey. We conclude that porpoises display the same overall acoustic prey capture behaviour seen in larger toothed whales in the wild, albeit at a faster pace, clicking slowly during search and approach phases and buzzing during prey capture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.