Digital image correlation (DIC) is a highly accurate image-based deformation measurement method achieving a repeatability in the range of σ = 10−5 relative to the field-of-view. The method is well accepted in material testing for non-contact strain measurement. However, the correlation makes it computationally slow on conventional, CPU-based computers. Recently, there have been DIC implementations based on graphics processing units (GPU) for strain-field evaluations with numerous templates per image at rather low image rates, but there are no real-time implementations for fast strain measurements with sampling rates above 1 kHz. In this article, a GPU-based 2D-DIC system is described achieving a strain sampling rate of 1.2 kHz with a latency of less than 2 milliseconds. In addition, the system uses the incidental, characteristic microstructure of the specimen surface for marker-free correlation, without need for any surface preparation—even on polished hourglass specimen. The system generates an elongation signal for standard PID-controllers of testing machines so that it directly replaces mechanical extensometers. Strain-controlled LCF measurements of steel, aluminum, and nickel-based superalloys at temperatures of up to 1000 °C are reported and the performance is compared to other path-dependent and path-independent DIC systems. According to our knowledge, this is one of the first GPU-based image processing systems for real-time closed-loop applications.
In this paper we present a miniaturized digital holographic sensor (HoloCut) for operation inside a machine tool. With state-of-the-art 3D measurement systems, short-range structures such as tool marks cannot be resolved inside a machine tool chamber. Up to now, measurements had to be conducted outside the machine tool and thus processing data are generated offline. The sensor presented here uses digital multiwavelength holography to get 3D-shape-information of the machined sample. By using three wavelengths, we get a large artificial wavelength with a large unambiguous measurement range of 0.5 mm and achieve micron repeatability even in the presence of laser speckles on rough surfaces. In addition, a digital refocusing algorithm based on phase noise is implemented to extend the measurement range beyond the limits of the artificial wavelength and geometrical depth-of-focus. With complex wave field propagation, the focus plane can be shifted after the camera images have been taken and a sharp image with extended depth of focus is constructed consequently. With 20 mm x 20 mm field of view the sensor enables measurement of both macro-and micro-structure (such as tool marks) with an axial resolution of 1 µm, lateral resolution of 7 µm and consequently allows processing data to be generated online which in turn qualifies it as a machine tool control. To make HoloCut compact enough for operation inside a machining center, the beams are arranged in two planes: The beams are split into reference beam and object beam in the bottom plane and combined onto the camera in the top plane later on. Using a mechanical standard interface according to DIN 69893 and having a very compact size of 235 mm x 140 mm x 215 mm (WxHxD) and a weight of 7.5 kg, HoloCut can be easily integrated into different machine tools and extends no more in height than a typical processing tool.
This article reports a novel GPU-based 2D digital image correlation system (2D-DIC) overcoming two major limitations of this technique: It measures marker-free, i.e. without sample preparation, and the sampling rate meets the recommendations of ASTM E606. The GPU implementation enables zero-normalized cross correlation (ZNCC) calculation rates of up to 25 kHz for 256 x 256 pixel ROIs. This high-speed image processing system is combined with a high-resolution telecentric lens observing a 10 mm field-of-view, coaxial LED illumination, and a camera acquiring 2040 x 256 pixel images with 1.2 kHz. The optics resolve the microstructure of the surface even of polished cylindrical steel specimen. The displacement uncertainty is below 0.5 µm and the reproducibility in zero-strain tests approximately 10(1 ) of the field-of-view. For strain-controlled testing, a minimum of two displacement subsets per image are evaluated for average strain with a sampling rate of 1.2 kHz. Similar to mechanical extensometers, an analogue 0-10V displacement signal serves as a feedback for standard PID controllers. The average latency is below 2 ms allowing for cycle frequencies up to 10 Hz. For strain-field measurement, the number of ROIs limits the frame rate, e.g., the correlation rate of 25 kHz is sufficient to evaluate 10 images per second with 2500 ROIs each. This frame rate is still sufficient to compare the maximum and minimum strain fields within a cycle in real-time, e.g. for crack detection. The result is a marker-free and non-contact DIC sensor suitable for both strain-controlled fatigue testing and real-time full-field strain evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.