Cyanobacteria are an integral part of Earth's biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO 2 . Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions. constraint-based analysis | whole-cell models | bioenergetics | metabolism | circadian clock C yanobacterial photoautotrophic growth requires a highly coordinated distribution of cellular resources to different intracellular processes, including the de novo synthesis of proteins, ribosomes, lipids, and other cellular components. For unicellular organisms, the optimal allocation of limiting resources is a key determinant of evolutionary fitness. Owing to the importance of cellular resource allocation for understanding evolutionary trade-offs in bacterial metabolism, the cellular "protein economy" and its implications for bacterial growth laws have been studied extensively, albeit almost exclusively for heterotrophic organisms under stationary environmental conditions (1-7). For photoautotrophic organisms, including cyanobacteria, growthdependent resource allocation is further subject to diurnal lightdark (LD) cycles that partition cellular metabolism into distinct phases. Recent experimental results have demonstrated the relevance of time-specific synthesis for cellular survival and growth (8-10). Nonetheless, the implications and consequences of a diurnal environment for the cellular resource allocation problem are insufficiently understood, and computational approaches hitherto developed for heterotrophic growth are not straightforwardly applicable to diurnal phototrophic growth (11).Here, we propose a computational framework to quantitatively assess the optimality of diurnal resource allocation for phototrophic growth. We are primarily interested i...
The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition.Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition. An approximation by a timescale separation leads to a coupled model of quasi steady state constraints on the metabolic reactions, and differential equations for the substrate concentrations and biomass composition. We propose a dynamic optimization approach to determine reaction fluxes for this model, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. Discretization of the optimization problems leads to a linear program that can be efficiently solved.We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle.
The computational analysis of phototrophic growth using constraint-based optimization requires to go beyond current time-invariant implementations of flux-balance analysis (FBA). Phototrophic organisms, such as cyanobacteria, rely on harvesting the sun’s energy for the conversion of atmospheric CO2 into organic carbon, hence their metabolism follows a strongly diurnal lifestyle. We describe the growth of cyanobacteria in a periodic environment using a new method called conditional FBA. Our approach enables us to incorporate the temporal organization and conditional dependencies into a constraint-based description of phototrophic metabolism. Specifically, we take into account that cellular processes require resources that are themselves products of metabolism. Phototrophic growth can therefore be formulated as a time-dependent linear optimization problem, such that optimal growth requires a differential allocation of resources during different times of the day. Conditional FBA then allows us to simulate phototrophic growth of an average cell in an environment with varying light intensity, resulting in dynamic time-courses for all involved reaction fluxes, as well as changes in biomass composition over a diurnal cycle. Our results are in good agreement with several known facts about the temporal organization of phototrophic growth and have implications for further analysis of resource allocation problems in phototrophic metabolism.
Asymptotic behaviors are often of particular interest when analyzing Boolean networks that represent biological systems such as signal transduction or gene regulatory networks. Methods based on a generalization of the steady state notion, the so-called trap spaces, can be exploited to investigate attractor properties as well as for model reduction techniques. In this paper, we propose a novel optimization-based method for computing all minimal and maximal trap spaces and motivate their use. In particular, we add a new result yielding a lower bound for the number of cyclic attractors and illustrate the methods with a study of a MAPK pathway model. To test the efficiency and scalability of the method, we compare the performance of the ILP solver gurobi with the ASP solver potassco in a benchmark of random networks.
BackgroundFlux coupling analysis (FCA) has become a useful tool in the constraint-based analysis of genome-scale metabolic networks. FCA allows detecting dependencies between reaction fluxes of metabolic networks at steady-state. On the one hand, this can help in the curation of reconstructed metabolic networks by verifying whether the coupling between reactions is in agreement with the experimental findings. On the other hand, FCA can aid in defining intervention strategies to knock out target reactions.ResultsWe present a new method F2C2 for FCA, which is orders of magnitude faster than previous approaches. As a consequence, FCA of genome-scale metabolic networks can now be performed in a routine manner.ConclusionsWe propose F2C2 as a fast tool for the computation of flux coupling in genome-scale metabolic networks. F2C2 is freely available for non-commercial use at https://sourceforge.net/projects/f2c2/files/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.