The computational analysis of phototrophic growth using constraint-based optimization requires to go beyond current time-invariant implementations of flux-balance analysis (FBA). Phototrophic organisms, such as cyanobacteria, rely on harvesting the sun’s energy for the conversion of atmospheric CO2 into organic carbon, hence their metabolism follows a strongly diurnal lifestyle. We describe the growth of cyanobacteria in a periodic environment using a new method called conditional FBA. Our approach enables us to incorporate the temporal organization and conditional dependencies into a constraint-based description of phototrophic metabolism. Specifically, we take into account that cellular processes require resources that are themselves products of metabolism. Phototrophic growth can therefore be formulated as a time-dependent linear optimization problem, such that optimal growth requires a differential allocation of resources during different times of the day. Conditional FBA then allows us to simulate phototrophic growth of an average cell in an environment with varying light intensity, resulting in dynamic time-courses for all involved reaction fluxes, as well as changes in biomass composition over a diurnal cycle. Our results are in good agreement with several known facts about the temporal organization of phototrophic growth and have implications for further analysis of resource allocation problems in phototrophic metabolism.
A constraint-based modeling approach was developed to investigate the metabolic response of the eukaryotic microalgae Chlamydomonas reinhardtii under photoautotrophic conditions. The model explicitly includes thermodynamic and energetic constraints on the functioning metabolism. A mixed integer linear programming method was used to determine the optimal flux distributions with regard to this set of constraints. It enabled us, in particular, to highlight the existence of a light-driven respiration depending on the incident photon flux density in photobioreactors functioning in physical light limitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.