Wearable medical devices, wireless sensor networks, and other energy-constrained sensing devices are often concerned with finding specific data within more-complex signals while maintaining low power consumption. Traditional analog-to-digital converters (ADCs) can capture the sensor information at a high resolution to enable a subsequent digital system to process for the desired data. However, traditional ADCs can be inefficient for applications that only require specific points of data. This work offers an alternative path to lower the energy expenditure in the quantization stage-asynchronous content-dependent sampling. This asynchronous sampling scheme is achieved by pairing a flexible analog front-end with an asynchronous successive-approximation ADC and a time-to-digital converter. The versatility and reprogrammability of this system allows a multitude of event-driven, asynchronous, or even purely data-driven quantization methods to be implemented for a variety of different applications. The system, fabricated in standard 0.5 µm and 0.35 µm processes, is demonstrated along with example applications with voice, EMG, and ECG signals.
A high-side load switch is presented for applications that require multiplexing the supply terminal to multiple voltage sources that are different, unknown, and/or dynamic. The design incorporates p-channel switches with adaptive n-well biasing to ensure that no junction is forward biased. Measured results are presented from a circuit that has been fabricated in a standard 0.35 μm CMOS process. The circuit is also demonstrated in an application of programming non-volatile memory.
Floating-gate (FG) transistors are a primary means of providing nonvolatile digital memory in standard CMOS processes, but they are also key enablers for large-scale programmable analog systems, as well. Such programmable analog systems are often designed for battery-powered and resource-constrained applications, which require the memory cells to program quickly and with low infrastructural overhead. To meet these needs, we present a four-transistor analog floating-gate memory cell that offers both voltage and current outputs and has linear programming characteristics. Furthermore, we present a simple programming circuit that forces the memory cell to converge to targets with 13.0 bit resolution. Finally, we demonstrate how to use the FG memory cell and the programmer circuit in array configurations. We show how to program an array in either a serial or parallel fashion and demonstrate the effectiveness of the array programming with an application of a bandpass filter array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.