The numerous emerging implementations of RISC-V processors and frameworks underline the success of this Instruction Set Architecture (ISA) specification. The free and open source character of many implementations facilitates their adoption in academic and commercial projects. As yet it is not easy to say which implementation fits best for a system with given requirements such as processing performance or power consumption. With varying backgrounds and histories, the developed RISC-V processors are very different from each other. Comparisons are difficult, because results are reported for arbitrary technologies and configuration settings. Scaling factors are used to draw comparisons, but this gives only rough estimates. In order to give more substantiated results, this paper compares the most prominent open-source application-class RISC-V projects by running identical benchmarks on identical platforms with defined configuration settings. The Rocket, BOOM, CVA6, and SHAKTI C-Class implementations are evaluated for processing performance, area and resource utilization, power consumption as well as efficiency. Results are presented for the Xilinx Virtex UltraScale+ family and GlobalFoundries 22FDX ASIC technology. CCS CONCEPTS• Computer systems organization → System on a chip; Serial architectures.
Fault injection through partial dynamic reconfiguration can simulate upsets in configuration memory of SRAMbased FPGAs. FT-UNSHADES 2 is an automated set-up, which runs multiple fault injection campaigns in batch mode, while automatically applying stimuli and comparing output vectors. This work presents the results of fault injection runs of an FPGA design intended for the data processing unit (DPU) of the Solar Orbiter Polarimetric and Helioseismic Imager (SoPHI) instrument on solar orbiter. In this DPU SRAM FPGAs are connected to a processor through a radiation hardened antifuse FPGA. This antifuse FPGA houses the configuration and data interfaces to the SRAM FPGAs of the DPU. When radiation induced errors occur in the SRAM FPGA, the antifuse FPGA isolates these errors and recovers operation. The fault injection campaign gave insight on fault induced behavior on the interfaces of the SRAM FPGA, allowed to categorize them, and create statistics of the different categories. This paper describes the mechanisms of fault detection isolation and recovery in the SRAM/antifuse FPGA interfaces and tests them with the faulty output vectors from fault injection.
Field-Programmable Gate Arrays (FPGAs) provide highly flexible platforms to implement sophisticated data processing for scientific space instruments. The dynamic partial reconfiguration (DPR) capability of FPGAs allows it to schedule HW tasks. While this feature adds another dimension of processing power that can be exploited without significantly increasing system complexity and power consumption, there are still several challenges for an efficient DPR use. State-of-the-art concepts concentrate either on resource-efficient implementations at design time or flexible HW task scheduling at runtime. In this paper we propose a balanced algorithm that considers both optimization goals and is well suited for resource-limited space applications.
Numerous processor cores based on the popular RISC-V Instruction Set Architecture have been developed in the past few years and are freely available. The same applies for RISC-V ecosystems that allow to implement System-on-Chips with RISC-V processors on ASICs or FPGAs. However, so far only very little concepts and implementations for fault tolerant RISC-V processors are existing. This inhibits the use of RISC-V for safety-critical applications (as in the automotive domain) or within radiation environments (as in the aerospace domain). This work enhances the existing implementations Rocket and BOOM with a generic Error Correction Code (ECC) protected memory as a first step towards fault tolerance. The impact of the ECC additions on performance and resource utilization are discussed.
ARM-FPGA coupled platforms allow accelerating the computation of specific algorithms by executing them in the FPGA fabric. Several computation steps of our case study for a stereo vision application have been accelerated by hardware implementations. Dynamic Partial Reconfiguration places these hardware tasks in the programmable logic at appropriate times. For an efficient scheduling, it needs to be decided when and where to execute a task. Although there already exist hardware/software scheduling strategies and algorithms, none exploit all possible optimization techniques: re-use, prefetching, parallelization, and pipelining of hardware tasks. The scheduling algorithm proposed in this paper takes this into account and optimizes for the objectives latency/throughput and power/energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.