Transverse flux permanent magnet (TFPM) machines are a potential candidate for directdrive wind power application due to high torque and power densities. The operating principle of TFPM machines is firstly described with various topologies available in literature, with the placement of magnets as a criterion for the classification of TFPM machine topologies. This review includes characteristics, power factor improvement, cogging torque minimization, material consideration, modelling techniques, and scalability. Different wind turbine concepts with direct-drive machines, control techniques and power converter topologies are also considered in this paper. INDEX Permanent magnet, topologies, transverse flux, and wind power.
Permanent magnet Vernier (PM-V) machines, at low power levels (few kWs), have shown a great potential to improve the torque density of existing direct-drive PM machines without much compromising on efficiency or making the machine structure more complicated. An improved torque density is very desirable for offshore wind power applications where the size of the direct-drive machine is an increasing concern. However, the relatively poor power factors of the PM-V machines will increase the power converter rating and hence cost. The objective of this paper is to review the benefits and challenges of PM-V machines for direct-drive offshore wind power applications. The review has been presented considering the system-level (direct-drive generator + converter) performance comparison between the surface-mounted permanent magnet Vernier (SPM-V) machines and the conventional SPM machines. It includes the indepth discussion on the challenges facing the PM-V machines when they are scaled up for multi-MW offshore wind power application. Other PM-V topologies discussed in literature have also been reviewed to asses their suitability for offshore wind power application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.