As humans increasingly dominate the nitrogen cycle, deposition of reactive nitrogen (Nr) will continue to have adverse consequences for ecosystems. In the Rocky Mountains, Nr deposition remains elevated and has become increasingly dominated by ammonium, despite efforts to reduce emissions. Currently, spatial models of Nr deposition do not fully account for urban and agricultural emissions, sources that contribute to the observed high rates of ammonium deposition in adjacent ecosystems. To address this gap in the Colorado Front Range, we measured Nr deposition along a transect from urban and agricultural plains to subalpine forests. We found elevated values of wet Nr deposition at the urban and foothill sites (4.7 and 4.4 kg N ha−1 yr−1, respectively), and lower values at the montane and subalpine sites (2.5–2.8 kg N ha−1 yr−1). Ammonium dominated wet and bulk Nr deposition, accounting for approximately 69% of bulk Nr deposition. Seasonally, bulk Nr deposition was highest in the spring months, when air masses from the plains are transported west into the mountains. Previous work has demonstrated that high elevations of the Colorado Front Range are especially sensitive to Nr deposition due to thin soil and minimal vegetation. Our results indicate that despite lower precipitation, the fire‐prone forested foothills receive even greater Nr deposition than higher elevations, due to proximity to urban and agricultural Nr sources. The interaction between elevated Nr deposition and wildfire in this region may pose a risk to water supplies and ecosystems, and is an important topic for future research.
For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment-visit https://www.usgs.gov or call 1-888-ASK-USGS.For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.