The promising drug candidate indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) is the second Ru-based anticancer agent to enter clinical trials. In this review, which is an update of a paper from 2006 (Hartinger et al., J. Inorg. Biochem. 2006, 100, 891-904), the experimental evidence for the proposed mode of action of this coordination compound is discussed, including transport into the cell via the transferrin cycle and activation by reduction. The results of the early clinical development of KP1019 are summarized in which five out of six evaluated patients experienced disease stabilization with no severe side effects.
BackgroundAfter the 2002/2003 SARS outbreak, 30% of survivors exhibited persisting structural pulmonary abnormalities. The long-term pulmonary sequelae of coronavirus disease 2019 (COVID-19) are yet unknown, and comprehensive clinical follow-up data are lacking.MethodsIn this prospective, multicentre, observational study, we systematically evaluated the cardiopulmonary damage in subjects recovering from COVID-19 at 60 and 100 days after confirmed diagnosis. We conducted a detailed questionnaire, clinical examination, laboratory testing, lung function analysis, echocardiography, and thoracic low-dose computed tomography (CT).ResultsData from 145 COVID-19 patients were evaluated, and 41% of all subjects exhibited persistent symptoms 100 days after COVID-19 onset, with dyspnea being most frequent (36%). Accordingly, patients still displayed an impaired lung function, with a reduced diffusing capacity in 21% of the cohort being the most prominent finding. Cardiac impairment, including a reduced left ventricular function or signs of pulmonary hypertension, was only present in a minority of subjects. CT scans unveiled persisting lung pathologies in 63% of patients, mainly consisting of bilateral ground-glass opacities and/or reticulation in the lower lung lobes, without radiological signs of pulmonary fibrosis. Sequential follow-up evaluations at 60 and 100 days after COVID-19 onset demonstrated a vast improvement of both, symptoms and CT abnormalities over time.ConclusionA relevant percentage of post-COVID-19 patients presented with persisting symptoms and lung function impairment along with pulmonary abnormalities more than 100 days after the diagnosis of COVID-19. However, our results indicate a significant improvement in symptoms and cardiopulmonary status over time.
Biotransformation of ruthenium(III) anticancer complexes as hypothesized in the activation-by-reduction theory is the central topic of the present paper. The redox behavior of tetrachlorobis(azole)ruthenate(III)-type complexes was studied by NMR spectroscopy and square wave voltammetry. The influence of reducing agents on the binding behavior toward the DNA-modeling nucleotide GMP was determined by capillary electrophoresis, accompanied by identification of arising peaks by online coupling to electrospray ionization mass spectrometry. The determination of redox potentials revealed that the biologically relevant reductants ascorbic acid and glutathione are capable of reducing the studied Ru(III) complexes under physiological conditions. Characteristic differences in reduction kinetics dependent on the pH value can be explained by higher reduction strength of ascorbic acid and glutathione at higher pH compared to the pH-independent redox response of ruthenium(III) complexes. Binding behavior of (H2ind)[trans-RuCl4(Hind)2] (Hind = 1H-indazole) toward GMP was found to be increased upon addition of two equivalents of glutathione but not of ascorbic acid. In contrast, only a minor influence on the GMP-binding under reductive conditions was found for (H2im)[trans-RuCl4(Him)2] (KP418, Him = 1H-imidazole).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.