Significance
This project describes the existence of previously unknown non–GPI-anchored CD59 isoforms required for insulin secretion, named CD59–IRIS-1 and CD59–IRIS-2, and finds reduced expression of CD59-IRIS isoforms in human diabetic islets, showing a link between dysregulation of IRIS isoforms and defects in insulin secretion in diabetic patients. These data open a path for future studies into CD59-IRIS expression and function in additional cell types capable of regulated secretion. Identification of additional specific CD59-IRIS binding partners within the cell could provide therapeutic targets for enhancement of insulin secretion in T2D.
Background
Sushi domain-containing protein 4 (SUSD4) is a recently discovered protein with unknown cellular functions. We previously revealed that SUSD4 can act as complement inhibitor and as a potential tumor suppressor.
Methods
In a syngeneic mouse model of breast cancer, tumors expressing SUSD4 had a smaller volume compared with the corresponding mock control tumors. Additionally, data from three different expression databases and online analysis tools confirm that for breast cancer patients, high mRNA expression of SUSD4 in the tumor tissue correlates with a better prognosis. In vitro experiments utilized triple-negative breast cancer cell lines (BT-20 and MDA-MB-468) stably expressing SUSD4. Moreover, we established a cell line based on BT-20 in which the gene for EGFR was knocked out with the CRISPR-Cas9 method.
Results
We discovered that the Epithelial Growth Factor Receptor (EGFR) interacts with SUSD4. Furthermore, triple-negative breast cancer cell lines stably expressing SUSD4 had higher autophagic flux. The initiation of autophagy required the expression of EGFR but not phosphorylation of the receptor. Expression of SUSD4 in the breast cancer cells led to activation of the tumor suppressor LKB1 and consequently to the activation of AMPKα1. Finally, autophagy was initiated after stimulation of the ULK1, Atg14 and Beclin-1 axis in SUSD4 expressing cells.
Conclusions
In this study we provide novel insight into the molecular mechanism of action whereby SUSD4 acts as an EGFR inhibitor without affecting the phosphorylation of the receptor and may potentially influence the recycling of EGFR to the plasma membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.