Concern about impacts of climate change in the Bering Sea prompted several research programs to elucidate mechanistic links between climate and ecosystem responses. Following a detailed literature review, Hunt et al. (2011) (Deep-Sea Res. II, 49, 2002) developed a conceptual framework, the Oscillating Control Hypothesis (OCH), linking climaterelated changes in physical oceanographic conditions to stock recruitment using walleye pollock (Theragra chalcogramma) as a model. The OCH conceptual model treats zooplankton as a single box, with reduced zooplankton production during cold conditions, producing bottom-up control of apex predators and elevated zooplankton production during warm periods leading to top-down control by apex predators. A recent warming trend followed by rapid cooling on the Bering Sea shelf permitted testing of the OCH. During warm years (2003-06), euphausiid and Calanus marshallae populations declined, post-larval pollock diets shifted from a mixture of large zooplankton and small copepods to almost exclusively small copepods, and juvenile pollock dominated the diets of large predators. With cooling from 2006-09, populations of large zooplankton increased, post-larval pollock consumed greater proportions of C. marshallae and other large zooplankton, and juvenile pollock virtually disappeared from the diets of large pollock and salmon. These shifts in energy flow were accompanied by large declines in pollock stocks attributed to poor recruitment between 2001 and 2005. Observations presented here indicate the need for revision of the OCH to account for shifts in energy flow through differing food-web pathways due to warming and cooling on the southeastern Bering Sea shelf.
Bering Sea sea ice during winter 2017–2018 was the lowest ever recorded. Ecosystem effects of low ice have been observed in the southeastern Bering Sea, but never in the northern Bering Sea. Observations in both systems included weakened water column stratification, delayed spring bloom, and low abundances of large crustacean zooplankton. Summer Cold Pool presence was extremely limited. Young walleye pollock production and condition were similar to prior warm years, though catches of other pelagic forage fishes were low. Summer seabird die‐offs were observed in the northern Bering Sea, and to lesser extent in the southeastern Bering Sea, and reproductive success was poor at monitored colonies. Selected bottom‐up responses to lack of sea ice in the north were similar to those in the south, potentially providing environmental indicators to project ecosystem effects in a lesser studied system. Results offer a potential glimpse of the broader Bering Sea pelagic ecosystem under future low‐ice projections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.