The classification of knowledge of a specified subject area is an actual task. The well-known methods of obtaining decision trees using entropy are not suitable for the classification of the subject area knowledge. So, a new algorithm of obtaining decision trees, whose way of obtaining is approximated to the natural intelligence, is suggested in the article. Here, the knowledge of a subject area is presented as a complex of answers to questions, which help to find the solution to a current task. The connection of entropy with the appearance of knowledge, the classification of previous knowledge, and the definitions used in decision trees are also analyzed in the article. The latter is necessary to compare the suggested algorithm approximated to the natural intelligence with the traditional method, using a small example. The article contains the analysis of solving a classification task for such a subject area as optimization methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.