Directed cardiac differentiation of human pluripotent stem cells (hPSCs) enables disease modeling, investigation of human cardiogenesis, as well as large-scale production of cardiomyocytes (CMs) for translational purposes. Multiple CM differentiation protocols have been developed to individually address specific requirements of these diverse applications, such as enhanced purity at a small scale or mass production at a larger scale. However, there is no universal highefficiency procedure for generating CMs both in two-dimensional (2D) and three-dimensional (3D) culture formats, and undefined or complex media additives compromise functional analysis or cost-efficient upscaling. Using systematic combinatorial optimization, we have narrowed down the key requirements for efficient cardiac induction of hPSCs. This implied differentiation in simple serum and serum albumin-free basal media, mediated by a minimal set of signaling pathway manipulations at moderate factor concentrations. The method was applicable both to 2D and 3D culture formats as well as to independent hPSC lines. Global time-course gene expression analyses over extended time periods and in comparison with human heart tissue were used to monitor culture-induced maturation of the resulting CMs. This suggested that hPSC-CMs obtained with our procedure reach a rather stable transcriptomic state after approximately 4 weeks of culture. The underlying gene expression changes correlated well with a decline of immature characteristics as well as with a gain of structural and physiological maturation features within this time frame. These data link gene expression patterns of hPSC-CMs to functional readouts and thus define the cornerstones of culture-induced maturation. STEM
To elucidate the function of Omega class glutathione transferases (GSTs) (EC 2.5.1.18) in multicellular organisms, the GSTO-1 from Caenorhabditis elegans (GSTO-1; C29E4.7) was investigated. Disc diffusion assays using Escherichia coli overexpressing GSTO-1 provided a test of resistance to long-term exposure under oxidative stress. After affinity purification, the recombinant GSTO-1 had minimal catalytic activity toward classic GST substrates but displayed significant thiol oxidoreductase and dehydroascorbate reductase activity. Microinjection of the GSTO-1-promoter green fluorescent protein construct and immunolocalization by electron microscopy localized the protein exclusively in the intestine of all postembryonic stages of C. elegans. Deletion analysis identified an approximately 300-nucleotide sequence upstream of the ATG start site necessary for GSTO-1 expression. Site-specific mutagenesis of a GATA transcription factor binding motif in the minimal promoter led to the loss of reporter expression. Similarly, RNA interference (RNAi) of Elt-2 indicated the involvement of this gut-specific transcription factor in GSTO-1 expression. Transcriptional up-regulation under stress conditions of GSTO-1 was confirmed by analyzing promoter-reporter constructs in transgenic C. elegans strains. To investigate the function of GSTO-1 in vivo, transgenic animals overexpressing GSTO-1 were generated exhibiting an increased resistance to juglone-, paraquat-, and cumene hydroperoxide-induced oxidative stress. Specific silencing of the GSTO-1 by RNAi created worms with an increased sensitivity to several prooxidants, arsenite, and heat shock. We conclude that the stress-responsive GSTO-1 plays a key role in counteracting environmental stress.
The mitogen-activated protein kinase (MAPK) pathways and insulin-like signaling play pivotal roles in cellular stress response. Using an anti-phospho-SAPK/JNK antibody and a daf-16::GFP-based reporter assay, the present study shows in Caenorhabditis elegans that ambient temperature (1-37 degrees C) specifically influences the activation (phosphorylation) of the MAP kinase JNK-1 as well as the nuclear translocation of DAF-16, the main downstream target of insulin-like signaling. Activated JNK-1 was detected only in neuronal cells, and JNK-1 was found to be controlled by the MAPK JKK-1 under heat stress. Comparative analyses on the wildtype and a jnk-1 deletion mutant revealed a promoting influence of JNK-1 on both nuclear DAF-16 translocations and DAF-16 target gene (superoxide dismutase 3, sod-3) expressions within peripheral, non-neuronal tissue. Consequently, the mutant exhibited a reduced thermal tolerance and reproductive fitness at higher temperatures. These results provide evidence of indirect interactions between neuronal MAPK and peripheral insulin-like signaling in response to environmental stimuli (temperature, H2O2).
Background: PP2A activity and intracellular targeting are regulated by post-translational modifications of B56 phosphoprotein subunits. Results: PP2A is inhibited by a PKC␣-dependent phosphorylation of B56␣ at Ser 41 leading to downstream functional effects. Conclusion: This inhibition may represent an important signaling pathway regulated by stimuli that activate PKC␣. Significance: Our data focus B56␣ on a dynamic role in the interplay between protein kinases and PP2A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.