The four OSKM factors OCT4, SOX2, KLF4 and c-MYC are key transcription factors modulating pluripotency, selfrenewal and tumorigenesis in stem cells. However, although their transcriptional targets have been extensively studied, little is known about how these factors are regulated at the posttranslational level. In this study, we established an in vitro system to identify phosphorylation patterns of the OSKM factors by AKT kinase. OCT4, SOX2, KLF4 and c-MYC were expressed in Sf9 insect cells employing the baculoviral expression system. OCT4, SOX2 and KLF4 were localized in the nucleus of insect cells, allowing their easy purification to near homogeneity upon nuclear fractionation. All transcription factors were isolated as biologically active DNA-binding proteins. Using in vitro phosphorylation and mass spectrometry-based phosphoproteome analyses several novel and known AKT phosphorylation sites could be identified in OCT4, SOX2 and KLF4.
Edited by Phyllis I. HansonThe human lysosomal polypeptide ABC transporter TAPL (ABC subfamily B member 9, ABCB9) transports 6 -59-aminoacid-long polypeptides from the cytosol into lysosomes. The subcellular localization of TAPL depends solely on its N-terminal transmembrane domain, TMD0, which lacks conventional targeting sequences. However, the intracellular route and the molecular mechanisms that control TAPL localization remain unclear. Here, we delineated the route of TAPL to lysosomes and investigated the determinants of single trafficking steps. By synchronizing trafficking events by a retention using selective hooks (RUSH) assay and visualizing individual intermediate steps through immunostaining and confocal microscopy, we demonstrate that TAPL takes the direct route to lysosomes. We further identified conserved charged residues within TMD0 transmembrane helices that are essential for individual steps of lysosomal targeting. Substitutions of these residues retained TAPL in the endoplasmic reticulum (ER) or Golgi. We also observed that for release from the ER, a salt bridge between Asp-17 and Arg-57 is essential. An interactome analysis revealed that Yip1-interacting factor homolog B membranetrafficking protein (YIF1B) interacts with TAPL. We also found that YIF1B is involved in ER-to-Golgi trafficking and interacts with TMD0 of TAPL via its transmembrane domain and that this interaction strongly depends on the newly identified salt bridge within TMD0. These results expand our knowledge about lysosomal trafficking of TAPL and the general function of extra transmembrane domains of ABC transporters.ATP-binding cassette (ABC) 2 transporters belong to one of the largest protein families in all organisms (1). In eukaryotes,
DDX RNA helicases promote RNA processing but DDX3X is also known to activate casein kinase 1 ϵ (CK1ϵ). Here we show that not only is protein kinase stimulation a latent property of other DDX proteins towards CK1ϵ, but that this extends to casein kinase 2 (CK2α2) as well. CK2α2 enzymatic activity is stimulated by a variety of DDX proteins and we identify DDX1/24/41/54 as physiological activators required for full kinase activity in vitro and in Xenopus embryos. Mutational analysis of DDX3X reveals that CK1 and CK2 kinase stimulation engages its RNA binding- but not catalytic motifs. Mathematical modelling of enzyme kinetics and stopped-flow spectroscopy converge that DDX proteins function as nucleotide exchange factor towards CK2α2 that reduce unproductive reaction intermediates and substrate inhibition. Our study reveals protein kinase stimulation by nucleotide exchange as a new principle in kinase regulation and an evolved function of DDX proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.