Edited by Phyllis I. HansonThe human lysosomal polypeptide ABC transporter TAPL (ABC subfamily B member 9, ABCB9) transports 6 -59-aminoacid-long polypeptides from the cytosol into lysosomes. The subcellular localization of TAPL depends solely on its N-terminal transmembrane domain, TMD0, which lacks conventional targeting sequences. However, the intracellular route and the molecular mechanisms that control TAPL localization remain unclear. Here, we delineated the route of TAPL to lysosomes and investigated the determinants of single trafficking steps. By synchronizing trafficking events by a retention using selective hooks (RUSH) assay and visualizing individual intermediate steps through immunostaining and confocal microscopy, we demonstrate that TAPL takes the direct route to lysosomes. We further identified conserved charged residues within TMD0 transmembrane helices that are essential for individual steps of lysosomal targeting. Substitutions of these residues retained TAPL in the endoplasmic reticulum (ER) or Golgi. We also observed that for release from the ER, a salt bridge between Asp-17 and Arg-57 is essential. An interactome analysis revealed that Yip1-interacting factor homolog B membranetrafficking protein (YIF1B) interacts with TAPL. We also found that YIF1B is involved in ER-to-Golgi trafficking and interacts with TMD0 of TAPL via its transmembrane domain and that this interaction strongly depends on the newly identified salt bridge within TMD0. These results expand our knowledge about lysosomal trafficking of TAPL and the general function of extra transmembrane domains of ABC transporters.ATP-binding cassette (ABC) 2 transporters belong to one of the largest protein families in all organisms (1). In eukaryotes,
N‐terminal sequences are important sites for post‐translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N‐terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor‐suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N‐terminal Met1‐Pro2 of a BRCA21‐40 peptide captured in its active site. Intriguingly, DPP9‐depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double‐strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N‐terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9‐deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine‐tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9's role in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.