ABSTRACT:Further development of the field of all-electric spintronics requires the successful integration of spin transport channels with spin injector/generator elements. While with the advent of graphene and related 2D materials high performance spin channel materials are available, the use of nanostructured spin generators remains a major challenge. Especially promising for the latter purpose are 3D topological insulators, whose 2D surface states host massless Dirac fermions with spin-momentum locking. Here, we demonstrate injection of spin-polarized current from a topological insulator into graphene, enabled by its intimate coupling to an ultrathin Bi 2 Te 2 Se nanoplatelet within a van der Waals epitaxial heterostructure. The spin switching signal, whose magnitude scales inversely with temperature, is detectable up to ~15 K. Our findings establish topological insulators as prospective future components of spintronic devices wherein spin manipulation is achieved by purely electrical means.
Raman scattering is a powerful tool for investigating the vibrational properties of two-dimensional materials. Unlike the 2H phase of many transition metal dichalcogenides, the 1T phase of TiSe features a Raman-active shearing and breathing mode, both of which shift toward lower energy with increasing number of layers. By systematically studying the Raman signal of 1T-TiSe in dependence of the sheet thickness, we demonstrate that the charge density wave transition of this compound can be reliably determined from the temperature dependence of the peak position of the E mode near 136 cm. The phase transition temperature is found to first increase with decreasing thickness of the sheets, followed by a decrease due to the effect of surface oxidation. The Raman spectroscopy-based method is expected to be applicable also to other 1T-phase transition metal dichalcogenides featuring a charge density wave transition and represents a valuable complement to electrical transport-based approaches.
The semimetallic, two-dimensional layered transition metal dichalcogenide WTe has raised considerable interest due to its huge, non-saturating magnetoresistance. While for the origin of this effect, a close-to-ideal balance of electrons and holes has been put forward, the carrier concentration dependence of the magnetoresistance remains to be clarified. Here, we present a detailed study of the magnetotransport behaviour of ultrathin, mechanically exfoliated WTe sheets as a function of electrostatic back gating. The carrier concentration and mobility, determined using the two band model and analysis of the Shubnikov-de Haas oscillations, indicate enhanced surface scattering for the thinnest sheets. By the back gate action, the magnetoresistance could be tuned by up to ∼100% for a ∼13 nm-thick WTe sheet.
Dilute isovalent sulfur doping simultaneously increases electrical conductivity and Seebeck coefficient in Bi2 Te2 Se nanoplates, and bulk pellets made from them. This unusual trend at high electron concentrations is underpinned by multifold increases in electron effective mass attributable to sulfur-induced band topology effects, providing a new way for accessing a high thermoelectric figure-of-merit in topological-insulator-based nanomaterials through doping.
We show that individual, isolated graphene nanoribbons, created with a molecular synthetic approach, can be assembled on functionalised wafer surfaces treated with silanes. The use of surface groups with different hydrophobicities allows tuning the density of the ribbons and assessing the products of the polymerisation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.