Phytoplankton blooms characterize temperate ocean margin zones in spring. We investigated the bacterioplankton response to a diatom bloom in the North Sea and observed a dynamic succession of populations at genus-level resolution. Taxonomically distinct expressions of carbohydrate-active enzymes (transporters; in particular, TonB-dependent transporters) and phosphate acquisition strategies were found, indicating that distinct populations of Bacteroidetes, Gammaproteobacteria, and Alphaproteobacteria are specialized for successive decomposition of algal-derived organic matter. Our results suggest that algal substrate availability provided a series of ecological niches in which specialized populations could bloom. This reveals how planktonic species, despite their seemingly homogeneous habitat, can evade extinction by direct competition.
In recent years, representatives of the Bacteroidetes have been increasingly recognized as specialists for the degradation of macromolecules. Formosa constitutes a Bacteroidetes genus within the class Flavobacteria, and the members of this genus have been found in marine habitats with high levels of organic matter, such as in association with algae, invertebrates, and fecal pellets. Here we report on the generation and analysis of the genome of the type strain of Formosa agariphila (KMM 3901 T ), an isolate from the green alga Acrosiphonia sonderi. F. agariphila is a facultative anaerobe with the capacity for mixed acid fermentation and denitrification. Its genome harbors 129 proteases and 88 glycoside hydrolases, indicating a pronounced specialization for the degradation of proteins, polysaccharides, and glycoproteins. Sixty-five of the glycoside hydrolases are organized in at least 13 distinct polysaccharide utilization loci, where they are clustered with TonB-dependent receptors, SusD-like proteins, sensors/ transcription factors, transporters, and often sulfatases. These loci play a pivotal role in bacteroidetal polysaccharide biodegradation and in the case of F. agariphila revealed the capacity to degrade a wide range of algal polysaccharides from green, red, and brown algae and thus a strong specialization of toward an alga-associated lifestyle. This was corroborated by growth experiments, which confirmed usage particularly of those monosaccharides that constitute the building blocks of abundant algal polysaccharides, as well as distinct algal polysaccharides, such as laminarins, xylans, and -carrageenans.
A recent investigation of bacterioplankton communities in the German Bight towards the end of a diatom-dominated spring phytoplankton bloom revealed pronounced successions of distinct bacterial clades. A combination of metagenomics and metaproteomics indicated that these clades had distinct substrate spectra and consumed different algal substrates. In this study we re-analyzed samples from the initial study by total community RNA (metatranscriptomics) and 16S rRNA gene amplicon sequencing. This complementary approach provided new insights into the community composition and expressed genes as well as the assessment of metabolic activity levels of distinct clades. Flavobacteria (genera Ulvibacter, Formosa, and Polaribacter), Alphaproteobacteria (SAR11 clade and Rhodobacteraceae) and Gammaproteobacteria (genus Reinekea and SAR92 clade) were the most abundant taxa. Mapping of the metatranscriptome data on assembled and taxonomically classified metagenome data of the same samples substantiated that Formosa and Polaribacter acted as major algal polymer degraders, whereas Rhodobacteraceae and Reinekea spp. exhibited less specialized substrate spectra. In addition, we found that members of the Rhodobacteraceae and SAR92 clade showed high metabolic activity levels, which suggests that these clades played a more important role during the bloom event as indicated by their in situ abundances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.