Modern risk management calls for an understanding of stochastic dependence going beyond simple linear correlation. This paper deals with the static (non-time-dependent) case and emphasizes the copula representation of dependence for a random vector. Linear correlation is a natural dependence measure for multivariate normally and, more generally, elliptically distributed risks but other dependence concepts like comonotonicity and rank correlation should also be understood by the risk management practitioner. Using counterexamples the falsity of some commonly held views on correlation is demonstrated; in general, these fallacies arise from the naive assumption that dependence properties of the elliptical world also hold in the non-elliptical world. In particular, the problem of finding multivariate models which are consistent with prespecified marginal distributions and correlations is addressed. Pitfalls are highlighted and simulation algorithms avoiding these problems are constructed.
The t copula and its properties are described with a focus on issues related to the dependence of extreme values. The Gaussian mixture representation of a multivariate t distribution is used as a starting point to construct two new copulas, the skewed t copula and the grouped t copula, which allow more heterogeneity in the modelling of dependent observations. Extreme value considerations are used to derive two further new copulas: the t extreme value copula is the limiting copula of componentwise maxima of t distributed random vectors; the t lower tail copula is the limiting copula of bivariate observations from a t distribution that are conditioned to lie below some joint threshold that is progressively lowered. Both these copulas may be approximated for practical purposes by simpler, better-known copulas, these being the Gumbel and Clayton copulas respectively.
It is shown that a necessary and sufficient condition for an Archimedean copula generator to generate a d-dimensional copula is that the generator is a d-monotone function. The class of d-dimensional Archimedean copulas is shown to coincide with the class of survival copulas of d-dimensional ℓ1-norm symmetric distributions that place no point mass at the origin. The d-monotone Archimedean copula generators may be characterized using a little-known integral transform of Williamson [Duke Math. J. 23 (1956) 189-207] in an analogous manner to the well-known Bernstein-Widder characterization of completely monotone generators in terms of the Laplace transform. These insights allow the construction of new Archimedean copula families and provide a general solution to the problem of sampling multivariate Archimedean copulas. They also yield useful expressions for the d-dimensional Kendall function and Kendall's rank correlation coefficients and facilitate the derivation of results on the existence of densities and the description of singular components for Archimedean copulas. The existence of a sharp lower bound for Archimedean copulas with respect to the positive lower orthant dependence ordering is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.