Extremal events play an increasingly important role in stochastic modelling in insurance and finance. Over many years, probabilists and statisticians have developed techniques for the description, analysis and prediction of such events. In the present paper, we review the relevant theory which may also be used in the wider context of Operation Research. Various applications from the field of insurance and finance are discussed. Via an extensive list of references, the reader is guided towards further material related to the above problem areas.
Modern risk management calls for an understanding of stochastic dependence going beyond simple linear correlation. This paper deals with the static (non-time-dependent) case and emphasizes the copula representation of dependence for a random vector. Linear correlation is a natural dependence measure for multivariate normally and, more generally, elliptically distributed risks but other dependence concepts like comonotonicity and rank correlation should also be understood by the risk management practitioner. Using counterexamples the falsity of some commonly held views on correlation is demonstrated; in general, these fallacies arise from the naive assumption that dependence properties of the elliptical world also hold in the non-elliptical world. In particular, the problem of finding multivariate models which are consistent with prespecified marginal distributions and correlations is addressed. Pitfalls are highlighted and simulation algorithms avoiding these problems are constructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.