Most attempts to produce a scalable quantum information processing platform based on ion traps have focused on the shuttling of ions in segmented traps. We show that an architecture based on an array of microtraps with fast gates will outperform architectures based on ion shuttling. This system requires higher power lasers but does not require the manipulation of potentials or shuttling of ions. This improves optical access, reduces the complexity of the trap, and reduces the number of conductive surfaces close to the ions. The use of fast gates also removes limitations on the gate time. Error rates of 10^{-5} are shown to be possible with 250 mW laser power and a trap separation of 100 μm. The performance of the gates is shown to be robust to the limitations in the laser repetition rate and the presence of many ions in the trap array.
We present an efficient approach to optimizing pulse sequences for implementing fast entangling two-qubit gates on trapped ion quantum information processors. We employ a two-phase procedure for optimizing gate fidelity, which we demonstrate for multi-ion systems in linear Paul trap and microtrap architectures. The first phase involves a global optimization over a computationally inexpensive cost function constructed under strong approximations of the gate dynamics. The second phase involves local optimizations that utilize a more precise ordinary differential equation description of the gate dynamics, which captures the nonlinearity of the Coulomb interaction and the effects of finite laser repetition rate. We propose two gate schemes that are compatible with this approach, and we demonstrate that they outperform existing schemes in terms of achievable gate speed and fidelity for feasible laser repetition rates. In optimizing sub-microsecond gates in microtrap architectures, the proposed schemes achieve orders-of-magnitude-higher fidelities than previous proposals. Finally, we investigate the impact of pulse imperfections on gate fidelity and evaluate error bounds for a range of gate speeds.
Radio-frequency-induced micromotion in trapped ion systems is typically minimized or circumvented to avoid off-resonant couplings for adiabatic processes such as multi-ion gate operations. Nonadiabatic entangling gates (so-called "fast gates") do not require resolution of specific motional sidebands and are, therefore, not limited to time scales longer than the trapping period. We find that fast gates designed for micromotion-free environments have a significantly reduced fidelity in the presence of micromotion. We show that when fast gates are designed to account for the radio-frequency-induced micromotion, they can, in fact, outperform fast gates in the absence of micromotion. The state-dependent force due to the laser induces energy shifts that are amplified by the stateindependent forces producing the micromotion. This enhancement is present for all trapping parameters and is robust to realistic sources of experimental error. This result paves the way for fast two-qubit entangling gates on scalable two-dimensional architectures, where micromotion is necessarily present on at least one interion axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.