The industrial use of quantum sensors requires further miniaturization of the experimental peripherals, i.e., the high vacuum chamber, laser technology, and control electronics. A central part of the high vacuum chamber is the maintenance of vacuum conditions. For this purpose, a prototype of a compact, i.e., miniaturized, ultrahigh vacuum pump in the form of a nonevaporable getter (NEG) pump at a wafer level (MEMS), is developed within the scope of this work. With regard to the basic conditions of the functionality of the NEG, a miniaturized heating plate with temperature sensors is analytically and numerically developed, constructed, and characterized in an ultrahigh vacuum test stand. This is followed by the integration of the NEG into the existing system, which, in connection with the characterization of material-specific parameters, enables a first correlation of heat input and pumping power. Thus, performance data of the getter-MEMS under high-vacuum confinement confirm its usability for quantum sensors. In addition, optimization potentials are shown with regard to all partial aspects of the MEMS.
Employing compact quantum sensors in field or in space (e.g., small satellites) implies demanding requirements on components and integration technologies. Within our work on integrated sensors, we develop miniaturized, ultra-stable optical setups for optical cooling and trapping of cold atomic gases. Besides challenging demands on alignment precision, and thermo-mechanical durability, we specifically address ultra-high vacuum (UHV) compatibility of our integration technologies and optical components. A prototype design of an UHV-compatible, crossed beam optical dipole trap setup and its application within a cold atomic quantum sensor is described. First qualification efforts on adhesive micro-integration technologies are presented. These tests are conducted in application-relevant geometries and material combinations common for micro-integrated optical setups. Adhesive aging will be investigated by thermal cycling or gamma radiation exposure. For vacuum compatibility testing, a versatile UHV testing system is currently being set up, enabling residual gas analysis and measurement of total gas rates down to 5•10-10 mbar l/s at a base pressure of 10-11 mbar, exceeding the common ASTM E595 test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.