Many land allocation issues, such as land-use planning, require input from extensive spatial databases and involve complex decision-making. Spatial decision support systems (SDSS) are designed to make these issues more transparent and to support the design and evaluation of land allocation alternatives. In this paper we analyze techniques for visualizing uncertainty of an urban growth model called SLEUTH, which is designed to aid decision-makers in the field of urban planning and fits into the computational framework of an SDSS. Two simple visualization techniques for portraying uncertainty-static comparison and toggling-are applied to SLEUTH results and rendered with different background information and color schemes. In order to evaluate the effectiveness of the two visualization techniques, a web-based survey was developed showing the visualizations along with questions about the usefulness of the two techniques. The web survey proved to be quickly accessible and easy to understand by the participants. Participants in the survey were mainly recruited among planners and decision-makers. They acknowledged the usefulness of portraying uncertainty for decision-making purposes. They slightly favored the static comparison technique over toggling. Both visualization techniques were applied to an urban growth case study for the greater Santa Barbara area in California, USA.
Manufacturing companies nowadays face growing numbers of heterogeneous customer requirements. Due to that, internal and external complexity lead to an increase in the associated costs. Especially companies with a high Engineer-to-Order business are strongly affected. To reduce external and internal complexity, Starting Solutions are a suitable way to do that. Starting Solutions require on the one hand the evaluation of product flexibility, on the other hand the evaluation of customer requirements. These two requirements are compared to each other and Starting Solutions are thereby derived.
Complex products and shorter development cycles lead to an increasing number of engineering changes. In order to be able to process these changes more effectively and efficiently, this paper develops a description model as a first step towards a data driven approach of processing engineering change requests. The description model is systematically derived from literature using text mining and natural language processing techniques. An example of the application is given by an automated classification based on similarity calculations between new and historic engineering change requests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.