It has been recently shown that multiple-input multiple-output (MIMO) antenna systems have the potential to dramatically improve the performance of communication systems over single antenna systems. Unlike beamforming, which presumes a high correlation between signals either transmitted or received by an array, the MIMO concept exploits the independence between signals at the array elements. In conventional radar, target scintillations are regarded as a nuisance parameter that degrades radar performance. The novelty of MIMO radar is that it takes the opposite view, namely, it capitalizes on target scintillations to improve the radar's performance. In this paper, we introduce the MIMO concept for radar. The MIMO radar system under consideration consists of a transmit array with widely-spaced elements such that each views a different aspect of the target. The array at the receiver is a conventional array used for direction finding (DF). The system performance analysis is carried out in terms of the Cramer-Rao bound of the meansquare error in estimating the target direction. It is shown that MIMO radar leads to significant performance improvement in DF accuracy.
This paper presents an analysis of target localization accuracy, attainable by the use of MIMO (Multiple-Input Multiple-Output) radar systems, configured with multiple transmit and receive sensors, widely distributed over a given area. The Cramer-Rao lower bound (CRLB) for target localization accuracy is developed for both coherent and noncoherent processing. Coherent processing requires a common phase reference for all transmit and receive sensors.The CRLB is shown to be inversely proportional to the signal effective bandwidth in the non-coherent case, but is approximately inversely proportional to the carrier frequency in the coherent case. We further prove that optimization over the sensors' positions lowers the CRLB by a factor equal to the product of the number of transmitting and receiving sensors. The best linear unbiased estimator (BLUE) is derived for the MIMO target localization problem. The BLUE's utility is in providing a closed form localization estimate that facilitates the analysis of the relations between sensors locations, target location, and localization accuracy. Geometric dilution of precision (GDOP) contours are used to map the relative performance accuracy for a given layout of radars over a given geographic area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.