The anatomical substrates of neural nets are usually composed from reconstructions of neurons that were stained in different preparations. Realistic models of the structural relationships between neurons require a common framework. Here we present 3-D reconstructions of single projection neurons (PN) connecting the antennal lobe (AL) with the mushroom body (MB) and lateral horn, groups of intrinsic mushroom body neurons (type 5 Kenyon cells), and a single mushroom body extrinsic neuron (PE1), aiming to compose components of the olfactory pathway in the honeybee. To do so, we constructed a digital standard atlas of the bee brain. The standard atlas was created as an average-shape atlas of 22 neuropils, calculated from 20 individual immunostained whole-mount bee brains. After correction for global size and positioning differences by repeatedly applying an intensity-based nonrigid registration algorithm, a sequence of average label images was created. The results were qualitatively evaluated by generating average gray-value images corresponding to the average label images and judging the level of detail within the labeled regions. We found that the first affine registration step in the sequence results in a blurred image because of considerable local shape differences. However, already the first nonrigid iteration in the sequence corrected for most of the shape differences among individuals, resulting in images rich in internal detail. A second iteration improved on that somewhat and was selected as the standard. Registering neurons from different preparations into the standard atlas reveals 1) that the m-ACT neuron occupies the entire glomerulus (cortex and core) and overlaps with a local interneuron in the cortical layer; 2) that, in the MB calyces and the lateral horn of the protocerebral lobe, the axon terminals of two identified m-ACT neurons arborize in separate but close areas of the neuropil; and 3) that MB-intrinsic clawed Kenyon cells (type 5), with somata outside the calycal cups, project to the peduncle and lobe output system of the MB and contact (proximate) the dendritic tree of the PE1 neuron at the base of the vertical lobe. Thus the standard atlas and the procedures applied for registration serve the function of creating realistic neuroanatomical models of parts of a neural net. The Honeybee Standard Brain is accessible at www.neurobiologie.fu-berlin.de/beebrain.
Brains are usually described as input/output systems: they transform sensory input into motor output. However, the motor output of brains (behavior) is notoriously variable, even under identical sensory conditions. The question of whether this behavioral variability merely reflects residual deviations due to extrinsic random noise in such otherwise deterministic systems or an intrinsic, adaptive indeterminacy trait is central for the basic understanding of brain function. Instead of random noise, we find a fractal order (resembling Lévy flights) in the temporal structure of spontaneous flight maneuvers in tethered Drosophila fruit flies. Lévy-like probabilistic behavior patterns are evolutionarily conserved, suggesting a general neural mechanism underlying spontaneous behavior. Drosophila can produce these patterns endogenously, without any external cues. The fly's behavior is controlled by brain circuits which operate as a nonlinear system with unstable dynamics far from equilibrium. These findings suggest that both general models of brain function and autonomous agents ought to include biologically relevant nonlinear, endogenous behavior-initiating mechanisms if they strive to realistically simulate biological brains or out-compete other agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.