Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus ‘metabolic reconstruction’, which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.
A better understanding of human metabolism and its relationship with diseases is an important task in human systems biology studies. In this paper, we present a high-quality human metabolic network manually reconstructed by integrating genome annotation information from different databases and metabolic reaction information from literature. The network contains nearly 3000 metabolic reactions, which were reorganized into about 70 human-specific metabolic pathways according to their functional relationships. By analysis of the functional connectivity of the metabolites in the network, the bow-tie structure, which was found previously by structure analysis, is reconfirmed. Furthermore, the distribution of the disease related genes in the network suggests that the IN (substrates) subset of the bow-tie structure has more flexibility than other parts.
Clustering based on clinicophysiologic parameters yielded 4 stable and reproducible clusters that associate with different pathobiological pathways.
COMMEnTOPEn 2 Scientific Data | (2020) 7:136 | https://doi.), an effort to build a comprehensive, standardized knowledge repository of SARS-CoV-2 virus-host interaction mechanisms, guided by input from domain experts and based on published work. This knowledge, available in the vast body of existing literature 1,2 and the fast-growing number of new SARS-CoV-2 publications, needs rigorous and efficient organization in both human and machine-readable formats.This endeavour is an open collaboration between clinical researchers, life scientists, pathway curators, computational biologists and data scientists. Currently, 162 contributors from 25 countries around the world are participating in the project, including partners from Reactome 3 , WikiPathways 4 , IMEx Consortium 5 , Pathway Commons 6 , DisGeNET 7 , ELIXIR 8 , and the Disease Maps Community 9 . With this effort, we aim for long-term community-based development of high-quality models and knowledge bases, linked to data repositories.The COVID-19 Disease Map will be a platform for visual exploration and computational analyses of molecular processes involved in SARS-CoV-2 entry, replication, and host-pathogen interactions, as well as immune response, host cell recovery and repair mechanisms. The map will support the research community and improve our understanding of this disease to facilitate the development of efficient diagnostics and therapies. Figure 1 illustrates the initial scope and layout of the map and its life cycle.At the time this Comment went to press, the COVID-19 Disease Map contains pathways of (i) the virus replication cycle and its transcription mechanisms; (ii) SARS-CoV-2 impact on ACE2-regulated pulmonary blood pressure, apoptosis, Cul2-mediated ubiquitination, heme catabolism, Interferon 2 and PAMP signalling, and endoplasmic reticulum stress; (iii) SARS-CoV-2 proteins Nsp4, Nsp6, Nsp14 and Orf3a. Moreover, the map incorporates the COVID-19 collection of WikiPathway diagrams 10 and a pre-published genome-scale metabolic model of human alveolar macrophages with SARS-CoV-2 11 . All these contributed open-access resources are referenced at https://fairdomhub.org/projects/190#models.By combining diagrammatic representation of COVID-19 mechanisms with underlying models, the map fulfils a dual role. First, it is a graphical, interactive representation of disease-relevant molecular mechanisms linking different knowledge bases. Second, it is a computational resource of reviewed content for graph-based analyses 12 and disease modelling 13 . Thus, it provides a platform for domain experts, such as clinicians, virologists, and immunologists, to collaborate with data scientists and computational biologists for a rigorous model building, accurate data interpretation and drug repositioning. It offers a shared mental map to understand gender, age, and other susceptibility features of the host, disease progression, defence mechanisms, and response to treatment. Finally, it can be used together with the maps of other human diseases to study comorbidities.In...
Our growing knowledge about various molecular mechanisms is becoming increasingly more structured and accessible. Different repositories of molecular interactions and available literature enable construction of focused and high-quality molecular interaction networks. Novel tools for curation and exploration of such networks are needed, in order to foster the development of a systems biology environment. In particular, solutions for visualization, annotation and data cross-linking will facilitate usage of network-encoded knowledge in biomedical research. To this end we developed the MINERVA (Molecular Interaction NEtwoRks VisuAlization) platform, a standalone webservice supporting curation, annotation and visualization of molecular interaction networks in Systems Biology Graphical Notation (SBGN)-compliant format. MINERVA provides automated content annotation and verification for improved quality control. The end users can explore and interact with hosted networks, and provide direct feedback to content curators. MINERVA enables mapping drug targets or overlaying experimental data on the visualized networks. Extensive export functions enable downloading areas of the visualized networks as SBGN-compliant models for efficient reuse of hosted networks. The software is available under Affero GPL 3.0 as a Virtual Machine snapshot, Debian package and Docker instance at http://r3lab.uni.lu/web/minerva-website/. We believe that MINERVA is an important contribution to systems biology community, as its architecture enables set-up of locally or globally accessible SBGN-oriented repositories of molecular interaction networks. Its functionalities allow overlay of multiple information layers, facilitating exploration of content and interpretation of data. Moreover, annotation and verification workflows of MINERVA improve the efficiency of curation of networks, allowing life-science researchers to better engage in development and use of biomedical knowledge repositories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.