High order numerical methods for networks of hyperbolic conservation laws have recently gained increasing popularity. Here, the crucial part is to treat the boundaries of the single (one-dimensional) computational domains in such a way that the desired convergence rate is achieved in the smooth case but also stability criterions are fulfilled, in particular in the presence of discontinuities. Most of the recently proposed methods rely on a WENO extrapolation technique introduced by Tan and Shu in [J. Comput. Phys. 229, pp. 8144-8166 (2010)]. Within this work, we refine and in a sense generalize these results for the case of a third order scheme. Numerical evidence for the analytically found parameter bounds is given as well as results for a complete third order scheme based on the proposed boundary treatment.
Computer vision applications in transportation logisticsand warehousing have a huge potential for process automation. We present a structured literature review on research in the field to help leverage this potential. All literature is categorized w.r.t. the application, i.e. the task it tackles and w.r.t. the computer vision techniques that are used. Regarding applications, we subdivide the literature in two areas: Monitoring, i.e. observing and retrieving relevant information from the environment, and manipulation, where approaches are used to analyze and interact with the environment. In addition to that, we point out directions for future research and link to recent developments in computer vision that are suitable for application in logistics. Finally, we present an overview of existing datasets and industrial solutions. We conclude that while already many research areas have been investigated, there is still huge potential for future research. The results of our analysis are also available online at https://a-nau.github.io/cv-in-logistics.1 Verband der Automobilindustrie e.V. (VDA), see https://www.vda.de/en.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.