Summary Lumpy skin disease (LSD) has recently expanded its range northwards to include the Balkans, Turkey and Russia. Because there was no solid evidence conclusively verifying the transmission mechanism in the field and LSDV viraemic animals with overt and asymptomatic presentation of disease and their products may represent a risk as an indirect transmission pathway. In this work, we used PCR positivity and infectivity in clinical and subclinical infection to evaluate the safety of meat and offal products from cows infected with the virulent LSDV strain Russia/Dagestan/2015. At day 21 post infection, seven of the 12 animals developed the generalized disease, and four animals became subclinically infected without apparent clinical signs. Upon examination and necropsy, the animals with the generalized disease had skin lesions; noticeably enlarged lymph nodes; and lesions in the lungs, trachea and testicles; whereas subclinically ill animals exhibited only enlarged lymph nodes and fever. For both disease presentations, testing of skeletal meat by PCR and virus isolation showed that the skeletal meat did not contain live virus or viral genome, whereas in cattle with generalized disease, meat with gross pathology physically connected under the site of a skin lesion was positive for the live virus. In subclinical infection, only enlarged lymph nodes carried the infectious virus, while the other internal organs tested in both types of disease manifestation were negative except for the testicles. Overall, our findings demonstrate that clinically and subclinically infected animals are reservoirs of live LSDV in lymph nodes and testicles, whereas deep skeletal meat in both types of infection do not carry live virus and the risk of transmission through this product seems very low. The detection of LSDV in testicular tissues in subclinically ill animals is concerning because of the potential to spread infection through contaminated semen. This aspect requires reconsideration of surveillance programmes to identify these Trojan horses of LSDV infection.
The transmission of "lumpy skin disease virus" (LSDV) has prompted intensive research efforts due to the rapid spread and high impact of the disease in recent years, especially in eastern europe and Balkan countries. in this study, we experimentally evaluate the vaccine-derived virulent recombinant LSDV strain (Saratov/2017) and provide solid evidence on the capacity of the virus for transmission in a vectorproof environment. In the 60-day long experiment, we used inoculated bulls (IN group) and two groups of in-contact animals (C1 and C2), with the former (C1) being in contact with the inoculated animals at the onset of the trial and the latter (C2) being introduced at day 33 of the experiment. The infection in both groups of contact animals was confirmed clinically, serologically and virologically, and viremia was demonstrated in blood, nasal and ocular excretions, using molecular tools. further studies into LSDV biology are a priority to gain insights into whether the hypothesized indirect contact mode evidenced in this study is a de novo-created feature, absent from both parental stains of the novel (recombinant) LSDV isolate used, or whether it was dormant, but then unlocked by the process of genetic recombination. Author summary: in global terms, LSD has been termed a "neglected disease" due to its historic natural occurrence of being restricted to Africa and, occasionally, israel. However, after its slow spread throughout the Middle east, the disease is now experiencing a resurgence of research interest following a recent and rapid spread into more northern latitudes. Given the dearth of solid findings on potential transmission mechanisms, no efficient or reliable control program currently exists, which does not involve the use of live attenuated vaccines or stamping out policies-both of which are controversial for implementation in non-endemic regions or countries. the vector-borne mode is the only working concept currently available, but with scarce evidence to support the aggressive spread northwards-except for human-assisted spread, including legal or illegal animal transportation. the emergence of outbreaks is not consistently linked to weather conditions, with the potential for new outbreaks to occur and spread rapidly. Here, for the first time, we provide evidence for indirect contact-mode transmission for a naturally-occurring recombinant LSDV isolated from the field. In an insect-proof facility, we obtained solid evidence that the novel LSDV strain can pass to in-contact animals. Given the recombinant nature of the virus utilised, its genetic background relating to the observed transmission pattern within the study needs to be delineated.
Since 1989, lumpy skin disease of cattle (LSD) has spread out of Africa via the Middle East northwards and eastwards into Russia, the Far East and South-East Asia. It is now threatening to become a worldwide pandemic, with Australia possibly next in its path. One of the research gaps on the disease concerns its main mode of transmission, most likely via flying insect vectors such as biting flies or mosquitoes. Direct or indirect contact transmission is possible, but appears to be an inefficient route, although there is evidence to support the direct contact route for the newly detected recombinant strains first isolated in Russia. In this study, we used experimental bulls and fed them via virus-inoculated feed to evaluate the indirect contact route. To provide deeper insights, we ran two parallel experiments using the same design to discover differences that involved classical field strain Dagestan/2015 LSDV and recombinant vaccine-like Saratov/2017. Following the attempted indirect contact transmission of the virus from the inoculated feed via the alimentary canal, all bulls in the Dagestan/2015 group remained healthy and did not seroconvert by the end of the experiment, whereas for those in the Saratov/2017 recombinant virus group, of the five bulls fed on virus-inoculated feed, three remained clinically healthy, while two displayed evidence of a mild infection. These results provide support for recombinant virus transmission via the alimentary canal. In addition, of particular note, the negative control in-contact bull in this group exhibited a biphasic fever at days 10 and 20, developed lesions from day 13 onwards, and seroconverted by day 31. Two explanations are feasible here: one is the in-contact animal was somehow able to feed on some of the virus-inoculated bread left over from adjacent animals, but in the case here of the individual troughs being used, that was not likely; the other is the virus was transmitted from the virus-fed animals via an airborne route. Across the infected animals, the virus was detectable in blood from days 18 to 29 and in nasal discharge from days 20 to 42. Post-mortem and histological examinations were also indicative of LSDV infection, supporting further evidence for rapid, in F transmission of this virus. This is the first report of recombinant LSDV strain transmitting via the alimentary mode.
Lumpy skin disease (LSD) causes considerable economic losses to cattle producers in endemic countries (Gari, Bonnet, Roger, & Waret-Szkuta, 2011). The aetiological agent is lumpy skin disease virus (LSDV) from the genus Capripoxvirus of the family Poxviridae. Due to the historic geographical restriction to Africa, research on lumpy skin disease virus has been neglected (Tuppurainen et al., 2017).Over the last years, multiple incursions of LSDV have occurred in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.