The Drosophila N-CAM homolog Fasciclin II (FasII) is expressed during the embryonic period in a subset of central neurons that pioneer the neuropile of the larval brain. Toward the end of embryogenesis, FasII expression in axon tracts diminishes but resumes from the late first larval instar in an increasingly complex pattern of axon tracts that join the tracts laid down in the embryo. We present evidence that FasII is expressed in a major fraction of the long axon tracts that interconnect different domains of the larval brain. For many tracts, FasII expression remains stable throughout larval development and pupal development. Therefore, the FasII pattern of axon tracts, along with the mushroom body and optic lobe, both of which are also FasII-positive, represents a useful set of landmarks that define different regions in the Drosophila brain throughout development. In this study, serial confocal brain sections were used to generate digital three-dimensional models of larval axon tracts at different stages. These models form part of our effort to generate an anatomic framework of Drosophila larval brain structure required for accurate localization of gene expression and gene function in experimental studies of neural development.
Induction of skin appendages involves a cascade of molecular events. The fibroblast growth factor (FGF) family of peptide growth factors is involved in cell proliferation and morphogenesis. We explored the role of the FGFs during skin appendage induction using developing chicken feather buds as a model. FGF-1, FGF-2, or FGF-4 was added directly to the culture medium or was released from pre-soaked Affigel blue beads. Near the midline, FGFs led to fusion of developing feather buds, representing FGFs' ability to expand feather bud domains in developing skin. In lateral regions of the explant where feather placodes have not formed, FGF treatment produces a zone of condensation and a region with an increased number of feather buds. In ventral epidermis that is normally apteric (without feathers), FGFs can also induce new feather buds. Like normal feather buds, the newly induced buds express Shh. The expression of Grb, Ras, Raf, and Erk, intracellular signaling molecules known to be downstream to tyrosine kinase receptors such as the FGF receptor, was enriched in feather bud domains. Genistein, an inhibitor of tyrosine kinase, suppressed feather bud formation and the effect of FGF. These results indicate that there are varied responses to FGFs depending on epithelial competence. All the phenotypic responses, however, show that FGFs facilitate the formation of skin appendage domains.
The neuropile of the late embryonic Drosophila brain can be subdivided into a vertical component (cervical connective), a transverse component (supraesophageal commissure), and a horizontal component for which we propose the term protocerebral connective. The core of each neuropile component is formed by numerous axon fascicles, the trajectory of which follows an invariant pattern. In the present study we have used an antibody against the adhesion molecule Fasciclin II (FasII) that is expressed in a large number of early differentiating neurons of the Drosophila embryo to follow the development of the axon tracts of the brain. The FasII antigen appears on the surface of clusters of neuronal somata prior to axon outgrowth. These clusters, for which we propose the term fibre tract founder clusters, are laid out in a linear pattern that forms an almost uninterrupted longitudinal track reaching from the ventral nerve cord to the "tip" of the brain. After expressing FasII on their soma, neurons of the fibre tract founder clusters extend axons that grow along the surface of the founder clusters and form a simple system of pioneer tracts for each of the components of the brain neuropile. We have reconstructed the FasII-positive fibre tract founder clusters and their axons from optical sections and generated digital 3-D models that illustrate the spatial relationships of the pioneer tracts. Three fibre tract founder clusters, D/T, P1, and P3m, pioneer the cervical connective. P21 and P2m form a transverse track that pioneers the supraesophageal commissure. P4m and P41/P51/VP5m form two tracts that pioneer a medial and a lateral component of the protocerebral connective, respectively. Because FasII expression continues uninterruptedly into the larval period when the "rudiments" of many parts of the adult neuropile are readily identifiable, it was possible to assign several of the embryonic pioneer tracts to definitive neuropile components, including the median bundle, antennocerebral tract, mushroom body, and posterior optic tract.
Evidence is presented for the existence of a soluble heterotetramer containing the low and middle molecular weight neurofilament (NF) proteins, NF-L and NF-M, and one containing the low and high molecular weight proteins, NF-L and NF-H, and for their role in filament assembly. When a mixture of either pair of proteins was renatured in 2 M urea, 20 mM Tris, pH 7.2, a new band representing a complex was observed in native gel electrophoresis. No new band was observed with a mixture of NF-M and NF-H. Two-dimensional gel electrophoresis showed that treatment of the complexes with SDS caused them to dissociate into their constituent polypeptide chains. Native neurofilaments dissociated in 2 M urea into a mixture of LM and LH complexes. Titration of NF-L with NF-M indicated that complex formation was complete at an approximately equimolar ratio of the two proteins. The LM complex had a sedimentation coefficient, s20,w, of 4.4 S, consistent with a tetrameric structure. Dialysis of a solution of the LM complex against 50 mM 4-morpholineethanesulfonic acid, 0.17 M NaCl, pH 6.25, led to the formation of 10-nm filaments in good yield. These results suggest that NF protein heterooligomers are intermediates in NF assembly and disassembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.