Virtual Machine (VM) placement has to carefully consider the aggregated resource consumption of co-located VMs in order to obey service level agreements at lower possible cost. In this paper, we focus on satisfying the traffic demands of the VMs in addition to CPU and memory requirements. This is a much more complex problem both due to its quadratic nature (being the communication between a pair of VMs) and since it involves many factors beyond the physical host, like the network topologies and the routing scheme. Moreover, traffic patterns may vary over time and predicting the resulting effect on the actual available bandwidth between hosts within the data center is extremely difficult.We address this problem by trying to allocate a placement that not only satisfies the predicted communication demand but is also resilient to demand time-variations. This gives rise to a new optimization problem that we call the Min Cut Ratio-aware VM Placement (MCRVMP). The general MCRVMP problem is NPHard; hence, we introduce several heuristics to solve it in reasonable time. We present extensive experimental results, associated with both placement computation and run-time performance under time-varying traffic demands, to show that our heuristics provide good results (compared to the optimal solution) for medium size data centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.