The c-Myc protein (Myc) is a transcription factor, and deregulated expression of the c-myc gene (myc) is frequently found in tumours. In Burkitt's lymphoma (BL), myc is transcriptionally activated by chromosomal translocation. We have used a B-cell line called P493-6 that carries a conditional myc allele to elucidate the role of Myc in the proliferation of BL cells. Regulation of proliferation involves the coordination of cell growth (accumulation of cell mass) and cell division [1] [2] [3]. Here, we show that division of P493-6 cells was strictly dependent on the expression of the conditional myc allele and the presence of foetal calf serum (FCS). More importantly, cell growth was regulated by Myc without FCS: Myc alone induced an increase in cell size and positively regulated protein synthesis. An increase in protein synthesis is thought to be one of the causes of cell mass increase. Furthermore, Myc stimulated metabolic activities, as indicated by the acidification of culture medium and the activation of mitochondrial enzymes. Our results confirm the model that Myc is involved in the regulation of cell growth [4] and provide, for the first time, direct evidence that Myc induces cell growth, that is, an increase in cell size, uncoupled from cell division.
Two genetic events contribute to the development of endemic Burkitt lymphoma (BL) infection of B lymphocytes with Epstein-Barr virus (EBV) and the activation of the protooncogene c-myc through chromosomal translocation. The viral genes EBV nuclear antigen 2 (EBNA2) and latent membrane protein 1 (LMP1) are essential for transformation of primary human B cells by EBV in vitro; however, these genes are not expressed in BL cells in vivo. To address the question whether c-myc activation might abrogate the requirement of the EBNA2 and LMP1 function, we have introduced an activated c-myc gene into an EBV-transformed cell line in which EBNA2 was rendered estrogen-dependent through fusion with the hormone binding domain of the estrogen receptor. The c-myc gene was placed under the control of regulatory elements of the immunoglobulin K locus composed of a matrix attachment region, the intron enhancer, and the 3' enhancer. We show here that transfection of a c-myc expression plasmid followed by selection for high MYC expression is capable of inducing continuous proliferation of these cells in the absence of functional EBNA2 and LMP1. c-myc-induced hormone-independent proliferation was associated with a dramatic change in the growth behavior as well as cell surface marker expression of these cells. The typical lymphoblastoid morphology and phenotype ofEBV-transformed cells completely changed into that of BL cells in vivo. We conclude that the phenotype of BL cells reflects the expression pattern ofviral and cellular genes rather than its germinal center origin.
Incompletely synthesized polypeptides in the mitochondrial inner membrane are subject to rapid proteolysis. We demonstrate that Ytal 0p, a mitochondrial homologue of a conserved family of putative ATPases in Saccharomyces cerevisiae, is essential for this proteolytic process. Ytal0p-dependent degradation requires divalent metal ions and the hydrolysis of ATE Ytal0p is an integral protein of the inner mitochondrial membrane exposing the carboxy terminus to the mitochondrial matrix space. Based on the presence of consensus binding sites for ATE and for divalent metal ions found in a number of metal dependent endopeptidases, a direct role of Yta 10p in the proteolytic breakdown of membrane-associated polypeptides in mitochondria is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.