We further develop our phi-function technique for solving Cutting and Packing problems. Here we introduce quasi-phi-functions for an analytical description of nonoverlapping and containment constraints for 2D-and 3D-objects which can be continuously rotated and translated. These new functions can work well for various types of objects, such as ellipses, for which ordinary phi-functions are too complicated or have not been constructed yet. We also define normalized quasi-phi-functions and pseudonormalized quasi-phi-functions for modeling distance constraints. To show the advantages of our new quasi-phi-functions we apply them to the problem of placing a given collection of ellipses into a rectangular container of minimal area. We use radical free quasi-phi-functions to reduce it to a nonlinear programming problem and develop an efficient solution algorithm. We present computational results that compare favourably with those published elsewhere recently.
We study the cutting and packing C&P problems in two dimensions by using phi-functions. Our phi-functions describe the layout of given objects; they allow us to construct a mathematical model in which C&P problems become constrained optimization problems. Here we define for the first time a complete class of basic phi-functions which allow us to derive phi-functions for all 2D objects that are formed by linear segments and circular arcs. Our phi-functions support translations and rotations of objects. In order to deal with restrictions on minimal or maximal distances between objects, we also propose adjusted phi-functions. Our phi-functions are expressed by simple linear and quadratic formulas without radicals. The use of radical-free phi-functions allows us to increase efficiency of optimization algorithms. We include several model examples.
We study the problem of packing a given collection of arbitrary, in general concave, polyhedra into a cuboid of minimal volume. Continuous rotations and translations of polyhedra are allowed. In addition, minimal allowable distances between polyhedra are taken into account. We derive an exact mathematical model using adjusted radical free quasi phi-functions for concave polyhedra to describe non-overlapping and distance constraints. The model is a nonlinear programming formulation. We develop an efficient solution algorithm, which employs a fast starting point algorithm and a new compaction procedure. The procedure reduces our problem to a sequence of nonlinear programming subproblems of considerably smaller dimension and a smaller number of nonlinear inequalities. The benefit of this approach is borne out by the computational results, which include a comparison with previously published instances and new instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.