Studies in mammalian skin have shown expression of the genes for corticotropin-releasing hormone (CRH) and the related urocortin peptide, with subsequent production of the respective peptides. Recent molecular and biochemical analyses have further revealed the presence of CRH receptors (CRH-Rs). These CRH-Rs are functional, responding to CRH and urocortin peptides (exogenous or produced locally) through activation of receptor(s)-mediated pathways to modify skin cell phenotype. Thus, when taken together with the previous findings of cutaneous expression of POMC and its receptors, these observations extend the range of regulatory elements of the hypothalamic-pituitary-adrenal axis expressed in mammalian skin. Overall, the cutaneous CRH/POMC expression is highly reactive to common stressors such as immune cytokines, ultraviolet radiation, cutaneous pathology, or even the physiological changes associated with the hair cycle phase. Therefore, similar to its central analog, the local expression and action of CRH/POMC elements appear to be highly organized and entrained, representing general mechanism of cutaneous response to stressful stimuli. In such a CRH/POMC system, the CRH-Rs may be a central element.
Following up on our previous findings that the skin possesses steroidogenic activity from progesterone, we now show widespread cutaneous expression of the full cytochrome P450 side-chain cleavage (P450scc) system required for the intracellular catalytic production of pregnenolone, i.e. the genes and proteins for P450scc enzyme, adrenodoxin, adrenodoxin reductase and MLN64. Functionality of the system was confirmed in mitochondria from skin cells. Moreover, purified mammalian P450scc enzyme and, most importantly, mitochondria isolated from placenta and adrenals produced robust transformation of 7-dehydrocholesterol (7-DHC; precursor to cholesterol and vitamin D3) to 7-dehydropregnenolone (7-DHP). Product identity was confirmed by comparison with the chemically synthesized standard and chromatographic, MS and NMR analyses. Reaction kinetics for the conversion of 7-DHC into 7-DHP were similar to those for cholesterol conversion into pregnenolone. Thus, 7-DHC can form 7-DHP through P450scc side-chain cleavage, which may serve as a substrate for further conversions into hydroxy derivatives through existing steroidogenic enzymes. In the skin, 5,7-steroidal dienes (7-DHP and its hydroxy derivatives), whether synthesized locally or delivered by the circulation, may undergo UVB-induced intramolecular rearrangements to vitamin D3-like derivatives. This novel pathway has the potential to generate a variety of molecules depending on local steroidogenic activity and access to UVB.
We investigated the cutaneous expression of genes and enzymes responsible for the multistep conversion of tryptophan to serotonin and further to melatonin. Samples tested were human skin, normal and pathologic (basal cell carcinoma and melanoma), cultured normal epidermal and follicular melanocytes, melanoma cell lines, normal neonatal and adult epidermal and follicular keratinocytes, squamous cell carcinoma cells, and fibroblasts from dermis and follicular papilla. The majority of the samples showed simultaneous expression of the genes for tryptophan hydroxylase, arylalkylamine N-acetyltransferase (AANAT), and hydroxyindole-O-methyltransferase (HIOMT). The products of AANAT activity were identified by RP-HPLC with fluorimetric detection in human skin and in cultured normal and malignant melanocytes and immortalized keratinocytes; HIOMT activity was detected in human skin, keratinocytes, and melanoma cells. N-acetylserotonin (NAS) was detected by RP-HPLC in human skin extracts. NAS identity was confirmed further by LC/MS in keratinocytes. In conclusion, we provide evidence that the human skin expresses intrinsic serotonin and melatonin biosynthetic pathways.
We tested the expression of genes coding receptors of a cutaneous serotoninergic/ melatoninergic system in whole human skin and in normal and pathologic cultured skin cells. Evaluation of serotonin (5HT), melatonin (MT), and melatonin-related receptors (MRR) showed expression of the isoforms 5HT2B, 5HT7, and MT1 genes in almost all the tested samples. Expression of other isoforms was less prevalent; 5HT2C, MRR, and MT2 were rarely detected. We also found novel isoforms for MT2, MRR, and 5HT2B and documented the process of RNA editing for 5HT2C. Testing for functional activity of these receptors with serotonin and melatonin (10 À14 to 10 À10 M) showed variable effects depending on cell type and culture conditions. Thus, serotonin stimulated proliferation of melanocytes in medium deprived of growth factors, while inhibiting cell growth in the presence of growth factors. Melatonin inhibited both apoptosis of HaCaT keratinocytes incubated in serum-free media, and proliferation of cells cultured in medium supplemented with serum. Melatonin also increased the numbers of viable fibroblasts incubated in serum free medium. N-acetylserotonin (NAS) and 5 methoxytryptamine (5MTT) were generally without effect on cell proliferation, with the exception of an inhibition of melanocyte proliferation at the higher 5MTT concentration of 10 À10 M. Thus, skin cells represent a true target for the products of the serotoninergic/ melatoninergic cutaneous pathway with their actions modulating cell proliferation or viability.
We identified four new isoforms of human CRH-R1 (e-h) and three of mouse (mCRH-R1c, e, and f). In all new forms exon 6 was missing. Human CRH-R1e was characterized by the deletion of exons 3 and 4; exon 12 from CRH-R1f; exon 11, 27 base pairs (bp) of exon 10 and 28 bp of exon 12 from CRH-R1g and CRH-R1h by the addition of a cryptic exon. In mouse CRH-R1c exon 3 was spliced out; in mCRH-R1e exons 3 and 4 and in mCRH-R1f exon 11 were spliced from mRNA. CRH-R1 was expressed in all skin specimens in patterns dependent on the cell type, physiological status, and presence of pathology. CRH-R1a, the most prevalent form, was detected in almost all samples. Ultraviolet radiation (UV) changed the splicing pattern and induced or increased expression of CRH-R1a in cultured skin cells. Continuing UV treatment of succeeding generations of cells resulted in a progressive increase in the number of CRH-R1 isoforms, which suggests that receptor heterogeneity might favor cell survival. TPA (phorbol 12-myristate 13-acetate), forskolin, dbcAMP (N6, 2'-O-dibutyryladenosine 3':5'-cyclic monophospate sodium), and IBMX (3-isobutyl-1-methylxanthine) also changed the splicing pattern. We suggest that a polymorphism of CRH-R1 expression is related to anatomic location, skin physiological or pathologic status, specific cell type, and external stress (UV), and that cAMP-dependent pathways and TPA may regulate CRH-R1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.