Animal models of ovarian cancer are crucial for understanding the pathogenesis of the disease and for testing new treatment strategies. A model of ovarian carcinogenesis in the rat was modified and improved to yield ovarian preneoplastic and neoplastic lesions that pathogenetically resemble human ovarian cancer. A significantly lower dose (2 to 5 g per ovary) of 7,12-dimethylbenz(a)anthracene (DMBA) was applied to the one ovary to maximally preserve its structural integrity. DMBA-induced mutagenesis was additionally combined with repetitive gonadotropin hormone stimulation to induce multiple cycles of active proliferation of the ovarian surface epithelium. Animals were treated in three arms of different doses of DMBA alone or followed by hormone administration. Comparison of the DMBA-treated ovaries with the contralateral control organs revealed the presence of epithelial cell origin lesions at morphologically distinct stages of preneoplasia and neoplasia. Their histopathology and path of dissemination to other organs are very similar to human ovarian cancer. Hormone cotreatment led to an increased lesion severity, indicating that gonadotropins may promote ovarian cancer progression. Point mutations in the Tp53 and Ki-Ras genes were detected that are also characteristic of human ovarian carcinomas. Additionally, an overexpression of estrogen and progesterone receptors was observed in preneoplastic and early neoplastic lesions, suggesting a role of these receptors in ovarian cancer development. These data indicate that this DMBA animal model gives rise to ovarian lesions that closely resemble human ovarian cancer and it is adequate for additional studies on the mechanisms of the disease and its clinical management.
2(1H)-pyrimidinone,5-(3-methylphenoxy) (MLR-1023) is a candidate for the treatment of type 2 diabetes. The current studies were aimed at determining the mechanism by which MLR-1023 mediates glycemic control. In these studies, we showed that MLR-1023 reduced blood glucose levels without increasing insulin secretion in vivo. We have further determined that MLR-1023 did not activate peroxisome proliferator-activated ␣, ␦, and ␥ receptors or glucagon-like peptide-1 receptors or inhibit dipeptidyl peptidase-4 or ␣-glucosidase enzyme activity. However, in an in vitro broad kinase screen MLR-1023 activated the nonreceptor-linked Src-related tyrosine kinase Lyn. MLR-1023 increased the V max of Lyn with an EC 50 of 63 nM. This Lyn kinase activation was ATP binding site independent, indicating that MLR-1023 regulated the kinase through an allosteric mechanism. We have established a link between Lyn activation and blood glucose lowering with studies showing that the glucose-lowering effects of MLR-1023 were abolished in Lyn knockout mice, consistent with existing literature linking Lyn kinase and the insulin-signaling pathway. In summary, these studies describe MLR-1023 as a unique blood glucose-lowering agent and show that MLR-1023-mediated blood glucose lowering depends on Lyn kinase activity. These results, coupled with other results (J Pharmacol Exp Ther 342:23-32, 2012), suggest that MLR-1023 and Lyn kinase activation may be a new treatment modality for type 2 diabetes.
MLR-1023 [Tolimidone; CP-26154; 2(1H)-pyrimidinone, 5-(3-methylphenoxy)] is an allosteric Lyn kinase activator that reduces blood glucose levels in mice subjected to an oral glucose tolerance test (J Pharmacol Exp Ther 342:15-22, 2012). The current studies were designed to define the role of insulin in MLR-1023-mediated blood glucose lowering, to evaluate it in animal models of type 2 diabetes, and to compare it to the activities of selected existing diabetes therapeutics. Results from these studies show that in an acute oral glucose tolerance test MLR-1023 evoked a dose-dependent blood glucose-lowering response that was equivalent in magnitude to that of metformin without eliciting a hypoglycemic response. In streptozotocin-treated, insulin-depleted mice, MLR-1023 administration did not affect blood glucose levels. However, MLR-1023 potentiated the glucose-lowering activity of exogenously administered insulin, showing that MLR-1023-mediated blood glucose lowering was insulin-dependent. In a hyperinsulinemic/ euglycemic clamp study, orally administered MLR-1023 increased the glucose infusion rate required to sustain blood glucose levels, demonstrating that MLR-1023 increased insulin receptor sensitivity. In chronically treated db/db mice, MLR-1023 elicited a dose-dependent and durable glucose-lowering effect, reduction in HbA1c levels and preservation of pancreatic -cells. The magnitude of effect was equivalent to that seen with rosiglitazone but with a faster onset of action and without causing weight gain. These studies show that MLR-1023 is an insulin receptor-potentiating agent that produces a rapid-onset and durable blood glucose-lowering activity in diabetic animals.
The synthesis and optimization of a series of orally bioavailable 1-(1H-indol-4-yl)-3,5-disubstituted benzene analogues as antimitotic agents are described. A functionalized dibromobenzene intermediate was used as a key scaffold, which when modified by sequential Suzuki coupling and Buchwald-Hartwig amination provided a flexible entry to 1,3,5-trisubstituted phenyl compounds. A 1H-indol-4-yl moiety at the 1-position was determined to be a critical feature for optimal potency. The compounds have been shown to induce cell cycle arrest at the G2/M phase and demonstrate efficacy in both cell viability and cell proliferation assays. The primary site of action for these agents is revealed by their colchicine competitive inhibition of tubulin polymerization, and a computational model has been developed for the association of these compounds to tubulin. An optimized lead LP-261 significantly inhibits growth of a human non-small-cell lung tumor (NCI-H522) in a mouse xenograft model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.