There is currently considerable enthusiasm around the MapReduce (MR) paradigm for large-scale data analysis [17]. Although the basic control flow of this framework has existed in parallel SQL database management systems (DBMS) for over 20 years, some have called MR a dramatically new computing model [8,17]. In this paper, we describe and compare both paradigms. Furthermore, we evaluate both kinds of systems in terms of performance and development complexity. To this end, we define a benchmark consisting of a collection of tasks that we have run on an open source version of MR as well as on two parallel DBMSs. For each task, we measure each system's performance for various degrees of parallelism on a cluster of 100 nodes. Our results reveal some interesting trade-offs. Although the process to load data into and tune the execution of parallel DBMSs took much longer than the MR system, the observed performance of these DBMSs was strikingly better. We speculate about the causes of the dramatic performance difference and consider implementation concepts that future systems should take from both kinds of architectures.
tHe MApReDUCe 7 (MR) pARADiGM has been hailed as a revolutionary new platform for large-scale, massively parallel data access. 16 Some proponents claim the extreme scalability of MR will relegate relational database management systems (DBMS) to the status of legacy technology. At least one enterprise, facebook, has implemented a large data warehouse system using MR technology rather than a DBMS. 14 Here, we argue that using MR systems to perform tasks that are best suited for DBMSs yields less than satisfactory results, 17 concluding that MR is more like an extract-transform-load (EtL) system than a mapReduce and Parallel DBmss: friends or foes? DBMS, as it quickly loads and processes large amounts of data in an ad hoc manner. As such, it complements DBMS technology rather than competes with it. We also discuss the differences in the architectural decisions of MR systems and database systems and provide insight into how the systems should complement one another.The technology press has been focusing on the revolution of "cloud computing," a paradigm that entails the harnessing of large numbers of processors working in parallel to solve computing problems. In effect, this suggests constructing a data center by lining up a large number of low-end servers, rather than deploying a smaller set of high-end servers. Along with this interest in clusters has come a proliferation of tools for programming them. MR is one such tool, an attractive option to many because it provides a simple model through which users are able to express relatively sophisticated distributed programs.Given the interest in the MR model both commercially and academically, it is natural to ask whether MR systems should replace parallel database systems. Parallel DBMSs were first available commercially nearly two decades ago, and, today, systems (from about a dozen vendors) are available. As robust, high-performance computing platforms, they provide a highlevel programming environment that is inherently parallelizable. Although it might seem that MR and parallel DBMSs are different, it is possible to write almost any parallel-processing task as either a set of database queries or a set of MR jobs.Our discussions with MR users lead us to conclude that the most common use case for MR is more like an ETL system. As such, it is complementary to DBMSs, not a competing technology, since databases are not designed to be good at ETL tasks. Here, we describe what we believe is the ideal use of MR technology and highlight the different MR and parallel DMBS markets. contributed articlesIllustratIon by MarIus WatZ
Borealis is a distributed stream processing engine that is being developed at Brandeis University, Brown University, and MIT. Borealis inherits core stream processing functionality from Aurora and inter-node communication functionality from Medusa.We propose to demonstrate some of the key aspects of distributed operation in Borealis, using a multi-player network game as the underlying application. The demonstration will illustrate the dynamic resource management, query optimization and high availability mechanisms employed by Borealis, using visual performance-monitoring tools as well as the gaming experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.