There is currently considerable enthusiasm around the MapReduce (MR) paradigm for large-scale data analysis [17]. Although the basic control flow of this framework has existed in parallel SQL database management systems (DBMS) for over 20 years, some have called MR a dramatically new computing model [8,17]. In this paper, we describe and compare both paradigms. Furthermore, we evaluate both kinds of systems in terms of performance and development complexity. To this end, we define a benchmark consisting of a collection of tasks that we have run on an open source version of MR as well as on two parallel DBMSs. For each task, we measure each system's performance for various degrees of parallelism on a cluster of 100 nodes. Our results reveal some interesting trade-offs. Although the process to load data into and tune the execution of parallel DBMSs took much longer than the MR system, the observed performance of these DBMSs was strikingly better. We speculate about the causes of the dramatic performance difference and consider implementation concepts that future systems should take from both kinds of architectures.
Parallel database machine architectures have evolved from the use of exotic hardware to a software parallel dataflow architecture based on conventional shared-nothing hardware. These new designs provide impressive speedup and scaleup when processing relational database queries. This paper reviews the techniques used by such systems, and surveys current commercial and research systems.
Mapping road networks is currently both expensive and labor-intensive. High-resolution aerial imagery provides a promising avenue to automatically infer a road network. Prior work uses convolutional neural networks (CNNs) to detect which pixels belong to a road (segmentation), and then uses complex post-processing heuristics to infer graph connectivity. We show that these segmentation methods have high error rates because noisy CNN outputs are difficult to correct. We propose RoadTracer, a new method to automatically construct accurate road network maps from aerial images. RoadTracer uses an iterative search process guided by a CNN-based decision function to derive the road network graph directly from the output of the CNN. We compare our approach with a segmentation method on fifteen cities, and find that at a 5% error rate, RoadTracer correctly captures 45% more junctions across these cities.
Scientific instruments and computer simulations are creating vast data stores that require new scientific methods to analyze and organize the data. Data volumes are approximately doubling each year. Since these new instruments have extraordinary precision, the data quality is also rapidly improving. Analyzing this data to find the subtle effects missed by previous studies requires algorithms that can simultaneously deal with huge datasets and that can find very subtle effects --- finding both needles in the haystack and finding very small haystacks that were undetected in previous measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.