Segmentation of human prostate from ultrasound (US) images is a crucial step in radiation therapy, especially in real-time planning for US image-guided prostate seed implant. This step is critical to determine the radioactive seed placement and to ensure the adequate dose coverage of prostate. However, due to the low contrast of prostate and very low signal-to-noise ratio in US images, this task remains as an obstacle. The manual segmentation of this object is time consuming and highly subjective. In this work, we have proposed a three-dimensional (3D) deformable surface model for automatic segmentation of prostate. The model has a discrete structure made from a set of vertices in the 3D space that form triangle facets. The model converges from an initial shape to its equilibrium iteratively, by a weighted sum of the internal and external forces. Internal forces are based on the local curvature of the surface and external forces are extracted from the volumetric image data by applying an appropriate edge filter. We have also developed a method for initialization of the model from a few initial contours that are drawn on different slices. During the deformation, a resampling procedure is used to maintain the resolution of the model. The entire model is applied in a multiscale scheme, which increases the robustness and speed, and guarantees a better convergence. The model is tested on real clinical data and initial results are very promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.