We report on the synthesis of a variety of trigonal imido cobalt complexes [Co(NAryl)L<sub>2</sub>)<sup>–</sup>, (L = N(Dipp)SiMe<sub>3</sub>), Dipp = 2,6-diisopropylphenyl) bearing very long Co–NAryl bonds of around 1.75 Å. The electronic structure was interrogated using a variety of physical and spectroscopic methods indicating the first authenticated examples of cobalt bound imidyl species. Computational studies corroborate these findings and reveal that the high-spin state of these complexes gives rise to unpaired spin-density on the imide nitrogen and leads to its imidyl character. Obtained complexes are capable of intermolecular H atom abstraction from C–H bonds that yields the corresponding cobalt amides. Exchange of the Dipp-substituent on the imide by the smaller mesityl function (2,4,6-trimethylphenyl) effectuates the unexpected Me<sub>3</sub>Si shift from the ancillary ligand set to the imide nitrogen, followed by intramolecular C–H bond activation.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.