Emerging applications-cloud computing, the internet of things, and augmented/virtual reality-demand responsive, secure, and scalable datacenter networks. These networks currently implement simple, per-packet, data-plane heuristics (e.g., ECMP and sketches) under a slow, millisecond-latency control plane that runs datadriven performance and security policies. However, to meet applications' service-level objectives (SLOs) in a modern data center, networks must bridge the gap between line-rate, per-packet execution and complex decision making.In this work, we present the design and implementation of Taurus, a data plane for line-rate inference. Taurus adds custom hardware based on a flexible, parallel-patterns (MapReduce) abstraction to programmable network devices, such as switches and NICs; this new hardware uses pipelined SIMD parallelism to enable per-packet MapReduce operations (e.g., inference). Our evaluation of a Taurus switch ASIC-supporting several real-world models-shows that Taurus operates orders of magnitude faster than a server-based control plane while increasing area by 3.8% and latency for linerate ML models by up to 221 ns. Furthermore, our Taurus FPGA prototype achieves full model accuracy and detects two orders of magnitude more events than a state-of-the-art control-plane anomaly-detection system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.