Owing to advancements in artificial intelligence (AI) and specifically in machine learning, information technology (IT) systems can support humans in an increasing number of tasks. Yet, previous research indicates that people often prefer human support to support by an IT system, even if the latter provides superior performance – a phenomenon called algorithm aversion. A possible cause of algorithm aversion put forward in literature is that users lose trust in IT systems they become familiar with and perceive to err, for example, making forecasts that turn out to deviate from the actual value. Therefore, this paper evaluates the effectiveness of demonstrating an AI-based system’s ability to learn as a potential countermeasure against algorithm aversion in an incentive-compatible online experiment. The experiment reveals how the nature of an erring advisor (i.e., human vs. algorithmic), its familiarity to the user (i.e., unfamiliar vs. familiar), and its ability to learn (i.e., non-learning vs. learning) influence a decision maker’s reliance on the advisor’s judgement for an objective and non-personal decision task. The results reveal no difference in the reliance on unfamiliar human and algorithmic advisors, but differences in the reliance on familiar human and algorithmic advisors that err. Demonstrating an advisor’s ability to learn, however, offsets the effect of familiarity. Therefore, this study contributes to an enhanced understanding of algorithm aversion and is one of the first to examine how users perceive whether an IT system is able to learn. The findings provide theoretical and practical implications for the employment and design of AI-based systems.
Digital investment management systems, commonly known as robo-advisors, provide new alternatives to traditional human services, offering competitive investment returns at lower cost and customer effort. However, users must give up control over their investments and rely on automated decision-making. Because humans display aversion to high levels of automation and delegation, it is important to understand the interplay of these two aspects. This study proposes a taxonomy of digital investment management systems based on their levels of decision automation and delegation along the investment management process. We find that the degree of automation depends on the frequency and urgency of decisions as well as the accuracy of algorithms. Notably, most providers only invest in a subset of funds pre-selected by humans, potentially limiting efficiency gains. Based on our taxonomy, we identify archetypical system designs, which facilitate further research on perception and adoption of digital investment management systems.
Die medienwirtschaftlichen Programme an der LMU München haben durch die Einbindung der Informatik einen Technologiebezug und streben so die Ausbildung von Spezialisten für Digitale Transformation an. Zudem fokussiert die Forschung und Lehre nicht mehr nur das klassische Mediengeschäft, sondern auch Plattformen, die Medienangebot und -Nachfrage verbinden, sowie Geschäftsmodelle von Unternehmen anderer Branchen, die eine Bereitstellung medialer Inhalte als Nebenerlös betrachten, etwa bei In-Car-Content-Konzepten.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.