A large barrier to magnetization reversal, a signature of a good single-molecule magnet (SMM), strongly depends on the structural environment of a paramagnetic metal ion. In a crystalline state, where SMM properties are usually measured, this environment is influenced by crystal packing, which may be different for the same chemical compound, as in polymorphs. Here we show that polymorphism can dramatically change the magnetic behavior of an SMM even with a very rigid coordination geometry. For a cobalt(II) clathrochelate, it results in an increase of the effective barrier from 109 to 180 cm, the latter value being the largest one reported to date for cobalt-based SMMs. Our finding thus highlights the importance of identifying possible polymorphic phases in search of new, even more efficient SMMs.
High magnetic anisotropy is a key property of paramagnetic shift tags, which are mostly studied by NMR spectroscopy, and of single molecule magnets, for which magnetometry is usually used. We successfully employed both these methods in analyzing magnetic properties of a series of transition metal complexes, the so-called clathrochelates. A cobalt complex was found to be both a promising paramagnetic shift tag and a single molecule magnet because of it having large axial magnetic susceptibility tensor anisotropy at room temperature (22.5 × 10 m mol) and a high effective barrier to magnetization reversal (up to 70.5 cm). The origin of this large magnetic anisotropy is a negative value of zero-field splitting energy that reaches -86 cm according to magnetometry and NMR measurements.
Transition-metal complexes are rarely considered as paramagnetic tags for NMR spectroscopy due to them generally having relatively low magnetic anisotropy. Here we report cobalt(II) cage complexes with the largest (among the transition-metal complexes) axial anisotropy of magnetic susceptibility, reaching as high as 12.6 × 10(-32) m(3) at room temperature. This remarkable anisotropy, which results from an unusual trigonal prismatic geometry of the complexes and translates into large negative value of the zero-field splitting energy, is high enough to promote reliable paramagnetic pseudocontact shifts at the distance beyond 2 nm. Our finding paves the way toward the applications of cobalt(II) clathrochelates as future paramagnetic tags. Given the incredible stability and functionalization versatility of clathrochelates, the fine-tuning of the caging ligand may lead to new chemically stable mononuclear single-molecule magnets, for which magnetic anisotropy is of importance.
Producing positronium (Ps) in the metastable 2 3 S state is of interest for various applications in fundamental physics. We report here on an experiment in which Ps atoms are produced in this long-lived state by spontaneous radiative decay of Ps excited to the 3 3 P level manifold. The Ps cloud excitation is obtained with a UV laser pulse in an experimental vacuum chamber in presence of guiding magnetic field of 25 mT and an average electric field of 300 V cm −1 . The evidence of the 2 3 S state production is obtained to the 3.6σ level of statistical significance using a novel analysis technique of the single-shot positronium annihilation lifetime spectra. The dynamic of the Ps population on the involved levels has been studied with a rate equation model.
A copper-promoted reductive homocoupling reaction, for the first time used for a metal complex, allowed obtaining a new kind of complexes with the encapsulated metal ions, C-C conjugated bis-clathrochelates. These compounds demonstrate extremely high transcription inhibition activity in the T7 RNA polymerase system with values of IC50 reaching as low as the submicromolar range, which places them among the most potent metal-based transcription inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.